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Hamid Sabourian, Chris Shannon, Quitzé Valenzuela-Stookey, Vasiliki Skreta, Nicholas Stephanopoulos,

Philipp Strack, Roland Strausz, Tomasz Strzalecki, Alexander Wolitzky, Wenji Xu, Nathan Yoder, Jidong

Zhou; and the participants of various seminars and conferences for their helpful comments. All errors are our

own.
†Yale School of Management, Email: kaihao.yang@yale.edu
‡Yale School of Management, Email: alexander.zentefis@yale.edu



1 Introduction

A political body is redrawing the boundaries of electoral districts for partisan gain. Elec-

tion results are dictated by the median voter theorem. To what extent can this gerryman-

dering affect the composition of the legislature?

A ride-sharing app is a platform between riders and drivers, and it can segment both sides

of the market. An inelastic supply must be held fixed at 75% of the number of riders in each

segment, so that wait times remain approximately the same across riders. This means that,

in each segment, the top 75th percentile of riders’ willingness-to-pay determines the price.

Which segmentation maximizes the platform’s revenue, and which one maximizes consumer

surplus?

An econometrician observes data on income and education from two different samples of

the population. What can she infer about the relation between the top 1% of earners and

their years of schooling?

Despite these scenarios roaming varied economic fields; reaching the areas of political

economy, industrial organization, and econometrics; all are connected by their shared concern

over the distribution of different posterior quantiles. This paper characterizes the distribu-

tions of posterior quantiles in a general setting, and it answers each of the scenario’s question

and more.

In our environment, a one-dimensional variable ω ∈ R follows a prior distribution F0.

Given any signal for ω (i.e., a joint distribution of ω and signal realizations with the marginal

of ω being F0), each signal realization induces a posterior distribution of ω via Bayes’ rule.

Therefore, any signal induces a distribution of posterior beliefs. If one computes the mean of

each posterior, Strassen’s theorem (Strassen 1965) implies that the distribution of posterior

means must be a mean-preserving contraction of F0. At the same time, any mean-preserving

contraction of F0 is a distribution of posterior means induced by some signal.

Instead of posterior means, one can derive many other statistics of a posterior. Suppose

that, instead of the mean, one computes a τ -quantile. A natural question then follows: For

any τ ∈ (0, 1), what is the distribution of posterior τ -quantiles?

Theorem 1 provides that characterization. Two distributions are important in this regard:

F τ
0(ω) := min

{
1

τ
F0(ω), 1

}
, F

τ

0(ω) := max

{
F0(ω)− τ

1− τ
, 0

}
.

The distribution F τ
0 can be interpreted as the conditional distribution of F0 in the event

that ω is smaller than a τ -quantile of F0. Similarly, F
τ

0 can be interpreted as the conditional

distribution of F0 in the event that ω is larger than the same τ -quantile. Theorem 1 states
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that any distribution of posterior τ -quantiles induced by a signal must be bounded by F τ
0

and F
τ

0 in the sense of first-order stochastic dominance. In the meantime, any distribution

bounded by F τ
0 and F

τ

0 in the sense of first-order stochastic dominance must be a distribution

of posterior τ -quantiles under some signal.

With the characterization of the distributions of posterior quantiles in hand, we then

apply it to several economic settings. The first is to gerrymandering, or the manipulation

of electoral district boundaries. In this setting, citizens identify with an ideal position on

political issues along a spectrum. The variety of positions is represented as a distribution,

which we can call a prior. An electoral map segments citizens into districts, which splits the

prior distribution into different parts. The distribution of ideal positions within each district

can be interpreted as a posterior.

If each district elects a representative holding the district’s median position (Downs 1957;

Black 1958), the composition of the legislative body (i.e., the distribution of ideal positions of

elected representatives) can then be represented by a distribution of posterior medians. In this

regard, Theorem 1 fully describes the scope of legislatures that unrestrained gerrymandering

can achieve. According to Theorem 1, gerrymandering can induce any legislature within the

bounds of two extremes: an “all-left” body and an “all-right” body. In the former, every

representative occupying the legislature has an ideal position that is left of the median voter’s

ideal, whereas in the latter, every representative is to the right. These two bounds imply that

unrestricted gerrymandering, taken to the extreme, can induce an entirely one-sided congress.

Theorem 1 also sheds light on how polarized a legislature can become. According to the

theorem, unrestrained gerrymandering can lead to a chamber without a single “moderate”

member whose ideal position is in the interquartile range of the prior.

With knowledge about possible compositions of a legislative body, we then study the

effects of gerrymandering on enacted legislation. For any legislative voting procedure that

enacts a policy whenever it is the ideal position of a majority of representatives (e.g., one

that enacts a median of a legislature’s views), an immediate consequence of Theorem 1 is

that any position that is part of the interquartile range of the prior can be enacted by a

legislature under some map. As a consequence, more extreme legislation can be enacted if

the population becomes more polarized in their views.

In addition to gerrymandering, we apply our characterization to Bayesian persuasion.

Kamenica and Gentzkow (2011) provide a framework for studying a sender’s communication

to a receiver under the commitment assumption. A practical challenge, however, is that the

concavafication approach used in this literature loses tractability as the number of states

increases. An exception is when the state is one-dimensional and only posterior means are

payoff-relevant to the sender. Theorem 1 complements this literature, as it brings tractability
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to settings where only posterior quantiles are payoff-relevant to the sender. We demonstrate

this by revisiting the two examples of Kamenica and Gentzkow (2011). Even in settings

without the commitment assumption, Theorem 1 still facilitates the characterization of the

sender’s equilibrium payoff. We demonstrate this by revisiting the cheap talk model with

transparent motives from Lipnowski and Ravid (2020).

Bayesian persuasion has notably been applied to industrial organization settings involving

market segmentation, in which a market is split into several segments to further price discrim-

ination (e.g., Bergemann, Brooks, and Morris 2015; Ichihashi 2020). In our next application,

we use the characterization to derive the outcomes induced by different segmentations of a

two-sided market.

In our application, we consider a two-sided market (e.g., ride-sharing). The demand side

is populated by riders with unit demand; whereas the supply side is populated by drivers

with unit supply. Total supply is inelastic, which is plausible during peak hours at a major

airport or at the conclusion of a large sporting event. A third-party platform (the ride-

sharing app) can segment the market to affect prices, but it is obligated to keep the ratio of

supply to demand of each segment the same (i.e., it faces a market thickness constraint), so

that all riders wait approximately the same time before matching with a driver. Theorem 1

provides a characterization of all outcomes that two-sided market segmentation can induce.

Perhaps surprisingly, if the platform’s revenue depends solely on total sales, the platform’s

optimal segmentation fully extracts all consumer surplus, rendering any thickness constraint

irrelevant.

Because the distribution of posterior quantiles is simply a conditional distribution, another

natural discipline ready for applications is econometrics. We apply the characterization to

quantile regression, which models the quantiles of the conditional distribution of a response

variable Y as a function of covariates X.

To facilitate their analysis and maintain tractability, econometricians often impose para-

metric assumptions regarding the quantile function, such as presuming linearity. Theorem 1

provides a model mis-specification test that relies only on the marginal of Y . The reliance on

information from just the marginal allows one to bypass estimation of the joint distribution

of (Y,X), which may be computationally demanding.

When the number of covariates equals 1 and the marginals of both X and Y are known,

an econometrician can go beyond evaluating model mis-specification to partially identifying

the quantile function. Taking a concrete example, one might have Y representing income and

X standing for education, and the two sets of data come from non-overlapping samples of

the population. If the quantile function is known to be increasing (such as income rising with

years of schooling), we show how Theorem 1 provides a non-parametric partial identification
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of the quantile function.

Our final applications are to topics in finance and accounting. For the financial applica-

tion, we take a setting in which a bank regulator considers requiring systemically important

financial institutions to issue equity capital in accordance with their contribution to the

Value-at-Risk of the financial system. Our characterization describes the full range of equity

that financial institutions would have to raise if under duress. For accounting, we consider

an auditor who worries about a manager misclassifying expenses to boost earnings. A cer-

tain dollar amount of misclassification constitutes material fraud. We provide a necessary

condition for an auditor to engage in a closer inspection of the reported expenses.

Related Literature This paper relates to several areas. Belief-based characterizations of

signals date back to the seminal contributions of Blackwell (1953) and Harsanyi (1967-68).

The characterization of distributions of posterior means can be derived from Strassen (1965),

and their economic applications are made clear in Rothschild and Stiglitz (1970). This paper

can be regarded as a complement, as it characterizes the distributions of posterior quan-

tiles, instead of means. The full characterization of distributions of posterior quantiles also

generalizes the results of Benôıt and Dubra (2011), who identify the Bayesian-rationalizable

self-ranking data where subjects place themselves relative to the population according to

a posterior quantile. Finally, our characterization relies on identifying extreme points of a

first-order stochastic dominance interval. Extreme points of orbits under the majorization

order (and, hence, of second-order stochastic dominance intervals) have been studied since

Hardy, Littlewood, and Pólya (1929), who examine finite-dimensional spaces. Ryff (1967)

extends this result to an infinite dimensional space. Kleiner, Moldovanu, and Strack (2021)

characterize the extreme points of a subset of orbits under an additional monotonicity as-

sumption, which in turn leads to many economic applications. Extreme points of first-order

stochastic dominance intervals exhibit a similar structure—albeit easier to characterize—in

the sense that either the stochastic dominance constraints bind on an interval, or there are

at most countably many mass points.

In terms of applications, our gerrymandering results are related to the literature on re-

districting. Among the closest papers are Owen and Grofman (1988), Friedman and Holden

(2008), Gul and Pesendorfer (2010), and Kolotilin and Wolitzky (2020), who adopt the same

distribution-based approach and model a district map as a way to split the population distri-

bution of voters. Generally speaking, this work mainly focuses on a political party’s optimal

gerrymandering when maximizing its expected number of seats. In contrast, our result char-

acterizes the feasible compositions of a legislative body that a district map can induce.

Our second application relates to the Bayesian persuasion literature. Based on the fun-
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damental principles outlined by Aumann and Maschler (1995) and Kamenica and Gentzkow

(2011), Gentzkow and Kamenica (2016) specialize preferences so that only the posterior

means are payoff-relevant. Dworczak and Martini (2019) further generalize the results and

provide a characterization of a sender’s optimal signals for a general class of mean-based

persuasion problems. Kleiner, Moldovanu, and Strack (2021) characterize the extreme points

of the feasible set of this convex problem. We complement this literature by providing a foun-

dation for solving persuasion problems where only the posterior quantiles are payoff-relevant.

Kolotilin, Corrao, and Wolitzky (2022) consider a general class of persuasion problems and

establish sufficient conditions under which particular types of signals are optimal. Their re-

sults and our application share a common special case, albeit their results are more general in

terms of receiver payoffs, whereas our application is more general in terms of sender payoffs.

In the meantime, the application of market segmentation to a two-sided market has

features of both one-sided market segmentation and price discrimination (e.g., Bergemann,

Brooks, and Morris 2015; Haghpanah and Siegel 2020, forthcoming; Yang 2022; Elliot, Ga-

leotti, Koh, and Li 2022) as well as matching in a two-sided market (e.g., Hagiu and Jullien

2011; de Cornière 2016; Condorelli and Szentes 2022; Guinsburg and Saraiva 2022).

Finally, the econometric applications are related to problems of inferring the joint dis-

tribution from marginals, as studied by Horowitz and Manski (1995) and Cross and Manski

(2002); the finance applications are related to the conditional Value-at-Risk measurement of

systemic risk introduced by Adrian and Brunnermeier (2016); and the accounting application

relates to classification shifting behavior identified in McVay (2006).

Outline The remainder of the paper proceeds as follows. Section 2 establishes the gen-

eral environment. Section 3 gives the paper’s main result. Economic applications follow

in Section 4 (gerrymandering), Section 5 (Bayesian persuasion and market segmentation),

Section 6 (econometrics), and Section 7 (finance and accounting). Section 8 concludes.

2 Preliminaries

State and Signals Consider a one-dimensional variable ω ∈ R. Let F0 ∈ F be the

distribution of ω, where F denotes the collection of distribution functions on R.1 A particular

distribution of interest is the uniform distribution on [0, 1], which is denoted by U ∈ F .

Namely, U(ω) = ω for all ω ∈ [0, 1]. A signal for ω is defined as µ ∈ ∆(F) such that∫
F
F (ω)µ(dF ) = F0(ω), (1)

1F is endowed with the weak-* topology and the induced Borel σ-algebra, unless otherwise specified.

5



for all ω ∈ R. LetM(F0) denote the collection of all signals (under prior distribution F0). For

the ease of exposition, we sometimes write M instead of M(F0) when there is no confusion.

From Blackwell’s theorem (Blackwell 1953), given any µ ∈ M, each F ∈ supp(µ) can be

interpreted as a posterior for ω obtained via Bayes’ rule under a prior F0, after observing

the realization of a signal that is correlated with ω. The marginal distribution of this signal

is summarized by µ.

Quantiles and Quantile Selection Rules For any distribution F ∈ F , let the quantile

function F−1 be defined as

F−1(τ) := inf{ω ∈ R|F (ω) ≥ τ},

for all τ ∈ (0, 1).2 Denote the set of τ -quantiles of F by Qτ (F ) := [F−1(τ), F−1(τ+)].

Furthermore, we say that a transition probability r : F × [0, 1] → ∆(R) is a quantile selection

rule if r(Qτ (F )|F, τ)) = 1 for all F ∈ F and for all τ ∈ (0, 1). A quantile selection rule

r selects (possibly through randomization) a τ -quantile for every CDF F and for every

τ ∈ (0, 1), whenever it is not unique. Let R be the collection of all selection rules.

Distributions of Posterior Quantiles For any τ ∈ (0, 1), for any signal µ ∈ M, and for

any selection rule r ∈ R, let Hτ (·|µ, r) denote the distribution of the τ -quantile induced by

µ and r. That is,

Hτ (ω|µ, r) =
∫
F
r((−∞, ω]|F, τ)µ(dF ), (2)

for all ω ∈ R. Our main result characterizes the distributions of posterior quantiles induced

by arbitrary signals and selection rules.

Stochastic Dominance Interval Given any F, F ′ ∈ F , recall that F dominates F ′ in the

sense of first-order stochastic dominance, denoted by F ⪰ F ′ henceforth, if F (ω) ≤ F ′(ω)

for all ω ∈ R. For any F, F ′ ∈ F , such that F ⪰ F ′, denote the set of CDFs that dominate

F ′ and are dominated by F as I(F ′, F ). That is,

I(F ′, F ) := {H ∈ F|F ′ ⪯ H ⪯ F}.
2Note that F−1 is nondecreasing and left-continuous for all F ∈ F . Moreover, for any τ ∈ (0, 1) and for

any ω ∈ R, F−1(τ) ≤ ω if and only if F (ω) ≥ τ .
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3 Characterization of Distributions of Posterior Quantiles

Our main result characterizes the collection of all possible distributions of posterior quantiles.

To state this result, for any τ ∈ (0, 1), let Hτ denote the set of distributions that can be

induced by some signal µ ∈ M and selection rule r ∈ R. Namely,

Hτ := {H ∈ F|H(ω) = Hτ (ω|µ, r), ∀ω ∈ R, for some µ ∈ M, r ∈ R}.

In the meantime, define two distributions F τ
0 and F

τ

0 as follows:

F τ
0(ω) := min

{
1

τ
F0(ω), 1

}
, F

τ

0(ω) := max

{
F0(ω)− τ

1− τ
, 0

}
.

Note that F
τ

0 ⪰ F τ
0 for all τ ∈ (0, 1). In essence, F τ

0 is the conditional distribution of F0 in

the event that ω is smaller than a τ -quantile of F0; whereas F
τ

0 is the conditional distribution

of F0 in the event that ω is larger than the same τ -quantile. This brings us to our main

result.

Theorem 1 (Distributions of Posterior Quantiles). For any τ ∈ (0, 1),

Hτ = I(F τ
0, F

τ

0).

Theorem 1 completely characterizes the distributions of posterior τ -quantiles by the

stochastic dominance interval I(F τ
0, F

τ

0). Figure I illustrates Theorem 1 for the case when

τ = 1/2. The distribution F
1/2
0 is colored blue, whereas the distribution F

1/2

0 is colored red.

The green dotted curve represents the prior, F0. According to Theorem 1, any distribution

H bounded by F
1/2
0 and F

1/2

0 (for instance, the black curve in the figure) can be induced by a

signal µ ∈ M and a select rule r ∈ R. Conversely, for any signal and for any selection rule,

the induced graph of the distribution of posterior τ -quantiles must fall in the area bounded

by the blue and red curves.

In what follows, we explain the main steps of the proof of Theorem 1. Details of the proof

can be found in the Appendix. To begin with, note that for any signal µ ∈ M and for any

r ∈ R,

Hτ (ω|µ, r) ≤ µ({F ∈ F|F−1(τ) ≤ ω}) = µ({F ∈ F|F (ω) ≥ τ}),

for all ω ∈ R, where the first inequality holds because the right-hand side corresponds to the

distribution of posterior quantiles induced by µ when the lowest τ -quantile is selected with

probability 1. Furthermore, for any ω ∈ R, if we regard F (ω) ∈ [0, 1] as a random variable

whose distribution is implied by µ, it then follows from (1) that its distribution must be
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Stochastic Dominance Interval

a mean-preserving spread of F0(ω). As a result, µ({F ∈ F|F (ω) ≥ τ}) can be at most

min{F0(ω)/τ, 1}, since otherwise, the mean of F (ω) can never be F0(ω). This implies that

Hτ (·|µ, r) ⪰ F τ
0. A similar argument leads to the conclusion that Hτ (·|µ, r) ⪯ F

τ

0 as well.

Thus, Hτ ⊆ I(F τ
0, F

τ

0).

The converse of the proof is relatively more involved. To begin with, we show that it is

without loss to restrict attention to the case where F0 = U . Specifically, for any τ ∈ (0, 1)

and for any ω ∈ [0, 1], let

U τ (ω) := min
{ω
τ
, 1
}

and U
τ
(ω) := max

{
ω − τ

1− τ
, 0

}
,

and let I∗
τ := I(U τ , U

τ
). In addition, let H∗

τ be the collection of H ∈ F such that H(ω) =

Hτ (ω|µ̃, r̃) for some µ̃ ∈ M(U) and r̃ ∈ R for all ω ∈ R. Then, we have the following lemma:

Lemma 1. Consider any τ ∈ (0, 1). Then I∗
τ ⊆ H∗

τ if and only if I(F τ
0, F

τ

0) ⊆ Hτ for all

F0 ∈ F .

By Lemma 1, it suffices to show that I∗
τ ⊆ H∗

τ . To this end, we first characterize the

extreme points of I∗
τ . This characterization is stated in Lemma 2:

Lemma 2. For any τ ∈ (0, 1), H is an extreme point of I∗
τ if and only if there exists

0 ≤ x ≤ x ≤ τ ≤ y ≤ y; countable sets I, J ; and sequences {xi, xi}i∈I , {yj, yj}j∈J ⊆ R such
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that U τ (x) = U
τ
(y); that x ≤ xi ≤ xi ≤ xi+1 ≤ x < y ≤ y

j
≤ yj ≤ y

j+1
≤ y for all

i ∈ I, j ∈ J ; and that

H(ω) =



0, if ω < x

U τ (xi), if ω ∈ [xi, xi)

U τ (ω), if ω ∈ [x, x)\ ∪i∈I [xi, xi)

U τ (x), if ω ∈ [x, y)

U
τ
(y

j
), if ω ∈ [y

j
, yj)

U
τ
(ω), if ω ∈ [y, y)\ ∪j∈J [y

j
, yj)

1, if ω ≥ y

, (3)

for all ω ∈ R.

Figure IIA illustrates an extreme point of I∗
τ . According to Lemma 2, an extreme point

H of I∗
τ has four cutoffs, x, x and y, y, such that supp(H) ⊆ [x, x]∪ [y, y]. Moreover, on [x, x],

H either coincides with U τ or is constant over an interval. Similarly, on [y, y], the left-limit

of H either coincides with U
τ
or is constant over an interval.

The main idea behind the proof is that, for any H ∈ I∗
τ that does not exhibit this

structure—such as the one depicted in Figure IIB—there must exist a rectangle in the interior

of the graph of I∗
τ such that H is not a step function when restricted to that rectangle. Hence,

in that rectangle, H can be split into two distinct nondecreasing functions, as depicted by

the gray curves in Figure IIB. This, in turn, implies that H can be split into two distinct

nondecreasing functions in I∗
τ , and hence, H is not an extreme point of I∗

τ .
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Having characterized the extreme points of I∗
τ , we then show that, for any extreme point

H, there exists a signal and a selection rule such that the induced distribution of posterior

τ -quantiles coincides with H. Details of the construction can be found in Appendix A.3. The

main intuition can be better understood by constructing a signal and a selection rule that

attains the boundary U
τ
. To this end, for any ω ∈ [τ, 1], define a distribution Uω by:

Uω(x) :=


0, if x < 0

x, if x ∈ [0, τ)

τ, if x ∈ [τ, ω)

1, if x ≥ ω

,

for all x ∈ R. Figure III illustrates Uω for some ω ∈ [τ, 1]. Note that, by construction,

ω = max(Qτ (Uω)) for all ω ∈ [τ, 1].

Furthermore, let µ be defined as

µ({Uω|ω ≤ y}) := y − τ

1− τ
,

for all y ∈ [τ, 1]. It then follows that µ ∈ M(U). Together with the selection rule r ∈ R
that always selects the largest τ -quantile, it follows that Hτ (ω|µ, r) = U

τ
(ω) for all ω ∈ R.3

3It is noteworthy that many other signals µ ∈ M(U) can also attain the boundary U
τ
when properly

paired with a selection rule, as long as all states above τ are separated, and each of them is pooled with
states below τ so that each is the selected τ -quantile. For instance, when τ = 1/2, the “matching extreme”
signal introduced by Friedman and Holden (2008), together with the selection rule that always selects the

largest quantile, attains U
1/2

as well. Nonetheless, the “matching extreme” signal cannot attain many other
extreme points of I∗

1/2. See Section 4.2 for an example.
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Finally, since any H̃ ∈ I∗
τ can be represented as a mixture of the extreme points of I∗

τ , and

since (µ, r) 7→ Hτ (·|µ, r) is affine, it then follows that I∗
τ ⊆ H∗

τ .
4

An immediate corollary of Theorem 1 characterizes the set of τ -quantiles of all distribu-

tions of posterior τ̃ -quantiles. The corollary can be regarded as the analogue of the law of

iterated expectations when means are replaced by quantiles.

Corollary 1 (Law of Iterated Quantiles). For any τ, τ̃ ∈ (0, 1) and for any closed interval

Q ⊆ R, Q = Qτ (H) for some H ∈ Hτ̃ if and only if Q ⊆ [(F τ̃
0)

−1(τ), (F
τ̃

0)
−1(τ+)].

Proof. Consider any H ∈ Hτ̃ . By Theorem 1, H ∈ I(F τ̃
0, F

τ̃

0). Thus, (F
τ̃
0)

−1(τ) ≤ H−1(τ) ≤
H−1(τ+) ≤ (F

τ̃

0)
−1(τ+), and therefore Qτ (H) ⊆ [(F τ̃

0)
−1(τ), (F

τ̃

0)
−1(τ+)]. Conversely, con-

sider any interval Q = [ω, ω] ⊆ [(F τ̃
0)

−1(τ), (F
τ̃

0)
−1(τ+)]. Then, let H be defined as

H(ω) :=


0, if ω < ω

τ, if ω ∈ [ω, ω)

1, if ω ≥ ω

,

for all ω ∈ R, then H ∈ I(F τ̃
0, F

τ̃

0) and Q = Qτ (H). Moreover, by Theorem 1, H ∈ Hτ̃ , as

desired. ■

Another corollary of Theorem 1 characterizes the probability weights assigned to an ar-

bitrary interval [ω, ω] ⊆ R under a distribution of a posterior τ -quantile.

Corollary 2. For any τ ∈ (0, 1) and for any [ω, ω] ⊆ R,

{H(ω)−H(ω)|H ∈ Hτ} = [(F
τ

0(ω))− F τ
0(ω))

+, (F τ
0(ω)− F

τ

0(ω))].

The proof of Corollary 2 is a direct application of Theorem 1 and hence is relegated to

the Online Appendix.

Although the characterization of Theorem 1 may seem to rely on selection rules r ∈ R,

the result remains (essentially) the same even when restricted to signals that always induce a

unique posterior τ -quantile. Theorem 2 below formalizes this statement. To this end, let H0
τ

4There are two alternative ways to prove Theorem 1 that bypass the characterization of extreme points.
One of them uses a “non-assortative” signal (and thus, not “single-dipped” in the sense of Kolotilin, Cor-
rao, and Wolitzky 2022 and not “matching extreme,” in the sense of Friedman and Holden 2008) with
binary-support posteriors. Under this signal, any H ∈ I∗

τ can be attained by properly selecting among
the multiple posterior quantiles. Another approach is to establish appropriate continuity properties of the
mapping (µ, r) 7→ Hτ (·|µ, r), and then find a proper way to approximate distributions H ∈ I∗

τ by the “ratio-
nalizable” data as in Benôıt and Dubra (2011). Nonetheless, the proof approach we discussed above applies
to characterizing distributions of unique posterior quantiles as well (see Theorem 2). Neither of these two
alternative approaches can do so, as they rely crucially on the multiplicity of certain posterior quantiles and
the selection rule.
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be the collection of distributions of posterior τ -quantiles that can be induced by some signal

where (almost) all posteriors have a unique τ -quantile. The characterization of H0
τ relates to

a family of perturbations of the set I(F τ
0, F

τ

0), namely {I(F τ+ε
0 , F

τ−ε

0 )}ε>0. Note that this

family is decreasing in ε under the set inclusion order.

Theorem 2 (Distributions of Unique Posterior Quantiles). For any τ ∈ (0, 1), for any

F0 ∈ F with full support on an interval in R, there exists ε̄ > 0 such that⋃
0<ε<ε̄

I(F τ+ε
0 , F

τ−ε

0 ) ⊆ H0
τ ⊆ I(F τ

0, F
τ

0).

The proof of Theorem 2 is conceptually similar to the proof of Theorem 1 and thus is

relegated to the Online Appendix. The proof relies on a feature of the signals we construct

to attain the extreme points of I∗
τ , where each desired state becomes the unique quantile

after a small perturbation. From Theorem 2, even if signals are required to always induce

a unique posterior quantile, distributions of posterior τ -quantiles are (almost) characterized

by I(F τ
0, F

τ

0) as well.
5

In what follows, we present applications relying on Theorem 1 for the ease of exposition.

Nevertheless, all applications have a corresponding version derived from Theorem 2, where

either feasible signals are restricted to always induce a unique posterior τ -quantile or selection

rules are fixed a priori (e.g., tie-breaking rules in elections are typically by statues).

4 Application I: Gerrymandering

4.1 The Limits of Gerrymandering

With the characterization in hand, our first application is to the consequences of political

redistricting. The study of redistricting ranges across many fields: Legal scholars, political

scientists, mathematicians, computer scientists, and economists have all contributed to this

vast literature.6 While existing economic theory on redistricting has largely focused on opti-

mal redistricting or fair redistricting mechanisms (e.g., Owen and Grofman 1988; Friedman

and Holden 2008; Gul and Pesendorfer 2010; Pegden, Procaccia, and Yu 2017; Ely 2019;

5Despite being in a different context and using a different proof approach, Theorem 2 generalizes theorem
1 and theorem 4 of Benôıt and Dubra (2011) by allowing for all priors (including non-uniform distributions
and those with atoms) and all kinds of partitions (including those with infinitely many elements) of the state
space. This, in turn, leads to a characterization of rationalizable data when subjects are asked to forecast
their own absolute performance score, rather than their relative position, based on their posterior medians.

6See, for example, Shotts (2001); Besley and Preston (2007); Coate and Knight (2007); McCarty, Poole,
and Rosenthal (2009); Fryer Jr and Holden (2011); McGhee (2014); Stephanopoulos and McGhee (2015);
Alexeev and Mixon (2018).
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Friedman and Holden 2020; Kolotilin and Wolitzky 2020), another fundamental question is

the scope of redistricting’s impact on a legislature. If any electoral map can be drawn, what

kinds of legislatures can be created? In other words, what are the “limits of gerrymandering”?

Theorem 1 describers the extent to which unrestrained gerrymandering can shape the

composition of elected representatives. Specifically, consider an environment in which a

continuum of citizens vote, and each citizen has single-peaked preferences over positions on

political issues. Citizens have different ideal positions ω ∈ [0, 1], and these positions are

distributed according to some F0 ∈ F .

In this setting, a signal µ ∈ M can be thought of as an electoral map, which segments

citizens into electoral districts, such that a district F ∈ supp(µ) is described by the condi-

tional distribution of the ideal positions of citizens who belong to it. Each district elects

a representative, and election results at the district-level follow the median voter theorem.

That is, given any map µ ∈ M, the elected representative of each district F must have an

ideal position that is a median of F . When there are multiple medians in a district, the

representative’s ideal position is determined by a selection rule r ∈ R.7

Given any µ ∈ M and any selection rule r ∈ R, the induced distribution of posterior

medians H1/2(·|µ, r) can be interpreted as a distribution of the ideal positions of the elected

representatives. Meanwhile, the bounds F
1/2
0 and F

1/2

0 can be interpreted as distributions of

representatives that only reflect one side of voters’ political positions relative to the median

of the population. Specifically, F
1/2
0 describes an “all-left” legislature, in which each repre-

sentative elected has an ideal position that is left of the median voter’s ideal. Conversely,

F
1/2

0 represents an “all-right” legislature, in which all representatives are positioned to the

right of the median voter.8

An immediate implication of Theorem 1 is that any composition of the legislative body

ranging from the “all-left” to the “all-right” can be procured by some map, as summarized

by Proposition 1 below. Thus, in the most extreme scenario, unrestrained gerrymandering

can lead to a skewed legislature consisting of representatives from only one side.

Proposition 1 (Limits of Gerrymandering). For any H ∈ F , the following are equivalent:

1. H ∈ I(F 1/2
0 , F

1/2

0 ).

2. H is a distribution of the representatives’ ideal positions under some map µ ∈ M and

some selection rule r ∈ R.

7Recall that any voting method that meets the Condorcet criterion (e.g., majority voting with two office-
seeking candidates) satisfies the median voter property in this setting (Downs 1957; Black 1958).

8Gomberg, Pancs, and Sharma (2021) also study how gerrymandering affects the composition of the
legislature. However, the authors assume that each district elects a mean candidate as opposed to the
median.
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Knowing the full range of possible legislative compositions allows us to ask a natural

question: For a given citizenry distribution F0, how much can unrestrained gerrymandering

contribute to polarization in the legislature? Corollary 2 sheds light on this question by

characterizing the share of “moderate” representatives under all maps.

Proposition 2. For any β ∈ [1/2, 1] and for any η ∈ [0, 1], the following are equivalent:

1. max{(4β − 3), 0} ≤ η ≤ min{4β − 1, 1}.

2. There exists a map and a selection rule such that the share of representatives with ideal

positions in [F−1
0 (1− β), F−1

0 (β+)] is η.

Proof. For any β ∈ [1/2, 1], (F
1/2

0 (F−1
0 (β+))− F

1/2
0 (F−1

0 (1− β)))+ = max{4β − 3, 0}, whereas
F

1/2
0 (F−1

0 (β+)) − F
1/2

0 (F−1
0 (1 − β)) = min{4β − 1, 1}. The result then immediately follows

from Corollary 2. ■

For any β ∈ [1/2, 1], Proposition 2 implies that gerrymandering can lead to a legisla-

ture where the share of “β-moderates” (i.e., those with ideal positions within [F−1
0 (1 −

β), F−1
0 (β+)]) is as small as (4β − 3)+. In particular, unrestrained gerrymandering can lead

to a legislature as polarized as having no representatives with positions in the interquartile

range of F0. From this perspective, in addition to the skewed “all-left” and “all-right” legis-

latures, many other extreme compositions are possible under unrestrained gerrymandering,

including a polarized chamber with no elected moderates.

Having a complete characterization of compositions of the legislature that can arise under

gerrymandering, we may further explore the set of possible legislative outcomes that can be

enacted. To this end, we must impose further assumptions on the congressional voting

method that enacts legislation. One example is that enacted legislation must be a median of

the representatives.9 Under this system, an immediate implication of Corollary 1 is that the

set of achievable legislative outcomes coincides with the interquartile range of the citizenry’s

ideal positions [F−1
0 (1/4), F−1

0 (3/4+)].

More generally, we may regard a legislative voting method as a mapping from the distribu-

tion of representatives’ ideal positions to a legislative outcome. One natural requirement for

such mappings is that they reflect the will of a majority whenever that will is unambiguous.

In other words, for any distribution of representatives’ ideal positions with more than 1/2 of

the representatives having the same ideal position ω ∈ [0, 1], the legislative voting procedure

must yield outcome ω. Notice that a voting system that always enacts a median position of

the representatives satisfies this requirement. As shown by Proposition 3 below, regardless of

9See McCarty, Poole, and Rosenthal 2001; Bradbury and Crain 2005; and Krehbiel 2010 for evidence that
the median legislator is decisive. See also Cho and Duggan (2009) for a microfoundation.
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the exact voting procedure adopted, the set of possible legislative outcomes always includes

the interquartile range.

Proposition 3. Consider any function C : H1/2 → [0, 1]. Suppose that C(H) = ω for all H

that assigns probability greater than 1/2 to ω. Then, C(H1/2) ⊇ (F−1
0 (1/4), F−1

0 (3/4+)).

Proof. Consider any ω ∈ (F−1(1/4), F−1(3/4+)). Let Hω be a distribution that assigns proba-

bility 2 ·min{F0(ω), 1−F0(ω)} to ω, and probability 1−2 ·min{F0(ω), 1−F0(ω)} to F−1
0 (1/2).

Then Hω ∈ I(F 1/2
0 , F

1/2

0 ). Therefore, by Theorem 1, Hω ∈ H1/2, which, in turn, implies that

C(Hω) = ω, as desired. ■

Proposition 3 shows that, under a wide variety of legislative voting procedures, unre-

strained gerrymandering can lead to any legislative outcome within the interquartile range

of citizens’ ideal positions, even if all district-level elections adhere to the median voter prop-

erty, and only the population medians are the Condorcet winners in this setting.10 Moreover,

since the interquartile range expands under a more polarized distribution of political views,

Proposition 3 also implies that unrestrained gerrymandering can lead to more extreme legis-

lation during more polarized times.

Knowing that the set of possible legislative outcomes far exceeds the Condorcet winners,

we next ask: Which legislative outcomes can defeat the Condercet winners by securing a

majority of support among representatives elected under some map? Proposition 4 below

characterizes the set of legislative outcomes that are preferred by a fraction α ∈ [1/2, 1] of the

representatives over any population medians under some map. To state this result, we let

ω(α) := max{2F−1
0 (α/2)− F−1

0 (1/2), 0} and ω(α) := min{2F−1
0 (1− α/2)− F−1

0 (1/2), 1}.

Proposition 4. For any ω ∈ [0, 1] and for any α ∈ [1/2, 1], the following are equivalent:

1. ω ∈ [ω(α), ω(α)].

2. There exists a map and a selection rule such that ω is preferred to any population

median by at least α share of the representatives.

Proof. See Appendix A.4. ■

According to Proposition 4, even though the population medians are Condorcet winners,

for any legislative outcome ω in [ω(α), ω(α)], there exists a gerrymandered map that would

secure ω with α-absolute majority of support among representatives. A special case for

10Recall that a Condorcet winner is defined as an outcome that has majority support when compared to
any other alternative. As every citizen has single-peaked preferences over positions in [0, 1], a Condorcet
winner always exists, and the set of Condorcet winners coincides with the population medians Q1/2(F0).
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this result is when F0 has a symmetric and quasi-convex density. In this case, ω(1/2) = 0

and ω(1/2) = 1. That is, under a polarized population distribution (even only slightly), any

outcome in [0, 1] can defeat the population medians by simple majority rule under some map,

which is arguably a complete reversal of the population medians’ Condorcet property. In the

meantime, note that ω is decreasing in α and ω is increasing in α. Moreover, ω(1) = F−1
0 (1/2+)

and ω(1) = F−1
0 (1/2). This suggests that raising the voting threshold for an alternative to

beat the population median, such as requiring an absolute majority or unanimous support,

can mitigate the impact of gerrymandering in this regard.

Remark 1 (Districts on a Geographic Map). In practice, election districts are drawn on a

geographic map. Drawing districts in this manner can be regarded as partitioning a two-

dimensional space that is spanned by latitude and longitude. More specifically, let a convex

and compact set Θ ⊆ [0, 1]2 denote a geographic map. Suppose that every citizen who resides

at the same location θ ∈ Θ shares the same ideal position ω(θ), where ω : Θ → [0, 1] is a

measurable function. Furthermore, suppose that citizens are distributed on Θ according to

a density function ϕ > 0. Under this setting, theorem 1 of Yang (2020) ensures that for

any µ ∈ M with a countable support, there exists a countable partition of Θ, such that the

distributions of citizens’ ideal positions within each element coincide with the distributions in

the support of µ. If we further assume that ω is non-degenerate, in the sense that each of its

indifference curves {θ ∈ Θ|ω(θ) = ω}ω∈[0,1] is isomorphic to the unit interval, then theorem

2 of Yang (2020) ensures that for any µ ∈ M, there exists a partition on Θ that generates

the same distributions in each district. Therefore, the splitting of the distribution of citizens’

ideal positions has an exact analogue to the splitting of geographic areas on a physical map.

4.2 Optimal Gerrymandering with Aggregate Uncertainty

In addition to characterizing the set of possible compositions of a legislative body that all

maps can induce, Theorem 1 also sheds lights on optimal gerrymandering problems in the

presence of aggregate uncertainty. Consider the same unit mass of citizens whose ideal

positions ω are distributed according to F0. Suppose that there is a map drawer who designs

the map of districts. The map drawer’s objective depends on two political parties’ seat

shares in the legislative body. Specifically, consider a model with aggregate uncertainty as in

Friedman and Holden (2008) and Kolotilin and Wolitzky (2020), but abstract away individual

uncertainty. Suppose that X ∼ G ∈ F is an aggregate shock to citizens’ views on the two

parties. Given any realization x ∈ [0, 1], a citizen with ideal position ω ∈ [0, 1] votes for one

party (Party 1) if and only if ω ≥ x; whereas, she votes for the other party (Party 0) if and

only if ω < x. Given a map µ ∈ M, a party wins a district if more than 50% of the citizens
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in that district vote for that party. Ties are broken by a tie-breaking rule r ∈ R selected by

the map drawer.

The map drawer chooses a map µ ∈ M and a tie-breaking rule r ∈ R to maximize

her payoff W (s), where W : [0, 1] → R and s denotes the share of districts that Party 1

wins (i.e., Party 1’s seat share of the legislative body). Note that, for any district F ∈ F
and for any realized aggregate shock x ∈ [0, 1], Party 1 wins the district if x ≤ F−1(1/2).

Therefore, given any realized x, the map drawer’s payoff under map µ and tie-breaking rule

r is 1−H1/2(x−|µ, r), and hence, the map drawer’s problem can be written as

sup
µ∈M,r∈R

∫ 1

0

W
(
1−H

1/2(x−|µ, r)
)
G(dx).

But this problem, by Theorem 1, is equivalent to

sup
H∈I(F

1/2
0 ,F

1/2
0 )

∫ 1

0

W (1−H(x−))G(dx). (4)

If W is increasing, then the solution of (4) is F
1/2

0 . This coincides with the solution stated

in proposition 3 of Kolotilin and Wolitzky (2020), which, in turn, is the full-information limit

of the solution in Friedman and Holden (2008). But more broadly, Theorem 1 provides solu-

tions to the map drawer’s problem for any objective function W , not necessarily increasing.11

For instance, the map drawer might be a bipartisan commission who wants to maintain a

balanced seat share, so that W is upper-semicontinuous, symmetric and quasi-concave with

a peak at s = 1/2. This, in turn, implies that the solution is H∗ ∈ I(F 1/2
0 , F

1/2

0 ), where

H∗(ω) :=


F

1/2
0 (ω), if ω < F−1

0 (1/4)
1
2
, if ω ∈ [F−1

0 (1/4), F−1
0 (3/4+))

F
1/2

0 (ω), if ω ≥ F−1
0 (3/4+)

, (5)

for all ω ∈ R.12 For detailed arguments, see the Online Appendix. More generally, note that

11The main result of Kolotilin and Wolitzky (2020) generalizes their proposition 3 by introducing individual
shocks on top of the aggregate shock. With individual shocks, the ex-post seat shares are no longer functions
of district medians, and thus Theorem 1 does not apply. That being said, their main result maintains the
assumption that W is increasing; whereas, Theorem 1 applies to any functional form of W . In this regard,
Theorem 1 relates to their main result by generalizing their proposition 3 as well, but along a different
dimension.

12Note that the solution H∗—which is also the (essentially) unique solution of (4) when both F0 and G
have full support on a common interval and when W is strictly quasi-concave—assigns zero probability to
the interval [F−1

0 (1/4), F−1
0 (3/4)], and hence, the “matching extreme” map by Friedman and Holden (2008) is

not optimal regardless of the selection rule in this case.
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with a change of variable, (4) can be written as

sup
H̃∈I(G◦(F

1/2
0 )−1,G◦(F

1/2
0 )−1)

∫ 1

0

W (1− s)H̃(ds),

which becomes a linear programming problem. In particular, the extreme points of the

feasible set can readily be characterized using similar arguments as in the proof of Lemma 2.

5 Application II: Bayesian Persuasion and Market Segmentation

Here, we apply our characterization to topics in Bayesian persuasion, cheap talk, and con-

sumer market segmentation. More detailed arguments for this section can be found in the

Online Appendix.

5.1 Quantile-Based Bayesian Persuasion

Consider the canonical Bayesian persuasion problem of Kamenica and Gentzkow (2011). A

state ω ∈ R is distributed according to a common prior F0. A sender chooses a signal

µ ∈ M to inform the receiver, who then picks an action a ∈ A after seeing the signal’s

realization. The ex-post payoffs of the sender and receiver are uS(ω, a) and uR(ω, a), re-

spectively. Kamenica and Gentzkow (2011) show that the sender’s optimal signal and the

value of persuasion can be characterized by the concave closure of the function v̂ : F → R,

where v̂(F ) := EF [uS(ω, a
∗(F ))] and a∗(F ) ∈ A is the sender-preferred optimal action under

posterior F ∈ F .

When |supp(F0)| ≥ 2, this “concavafication” method requires finding the concave closure

of a multi-variate function, which is known to be computationally challenging, especially

when |supp(F0)| = ∞. For tractability, many papers have restricted attention to prefer-

ences where the only payoff-relevant statistic for the sender is the posterior mean (i.e., v̂(F )

is measurable with respect to EF [ω]). See, for example, Gentzkow and Kamenica (2016);

Kolotilin, Li, Mylovanov, and Zapechelnyuk (2017); Kolotilin (2018); Dworczak and Martini

(2019); Ali, Haghpanah, Lin, and Siegel (2022); and Kolotilin, Mylovanov, and Zapechelnyuk

(forthcoming). A natural analogue of this “mean-based” setting is for the payoffs to depend

only on the posterior quantiles. Our main characterization provides means to solve this class

of problems defined by “quantile-based” payoffs.

Specifically, suppose that the sender’s and receiver’s payoffs are such that there exists
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τ ∈ (0, 1) and a measurable function vS : R → R in which

v̂(F ) = sup
ω∈Qτ (F )

vS(ω), (6)

for all F ∈ F . Under this assumption, Theorem 1 implies that the sender’s problem can be

rewritten as

sup
H∈I(F τ

0 ,F
τ
0 )

∫
R
vS(ω)H(dω). (7)

Namely, the sender simply selects a distribution belonging to the stochastic dominance in-

terval I(F τ
0, F

τ

0) that maximizes the expected value of vS(ω), rather than concavafying the

infinite-dimensional functional v̂. A significant benefit of this simplification is that the sender

only needs to solve a constrained maximization problem with an affine objective and a well-

behaved feasible set.13 In what follows, we demonstrate this simplification by revisiting the

two examples of Kamenica and Gentzkow (2011).

Lobbying under the Absolute Loss Function

A politician (receiver) chooses a one dimensional policy a ∈ R to match the state ω ∈ R,

which is unknown to the politician and follows a common prior F0 ∈ F . The lobbyist (sender)

can choose any signal for ω to affect the politician’s choice of policy. Kamenica and Gentzkow

(2011) assume that the lobbyist’s payoff is uS(ω, a) = −(a−αω− (1−α)ω0)
2, for some fixed

ω0 ∈ R and α ∈ [0, 1]; and the politician’s payoff is uR(ω, a) = −(a−ω)2. The quadratic loss

structure simplifies the lobbyist’s problem into a mean-based persuasion problem that can

easily be solved analytically.

Of course, one may argue that the quadratic loss structure is specific, and the general

lobbying problem remains difficult to solve. Nonetheless, Theorem 1 lets one solve another

parameterization of this problem. Instead of quadratic loss, suppose now that the politician’s

payoff is given by the absolute loss : uR(ω, a) = −|a − ω|. Also, suppose that the lobbyist’s

payoff is state-independent: uS(·, a) is constant for all a. Then, for any posterior F ∈ F , the

politician’s optimal actions are Q1/2(F ), and thus, the lobbyist’s problem can be written as:

sup
H∈I(F

1/2
0 ,F

1/2
0 )

∫
R
vS(ω)H(dω), (8)

which can now be solved analytically. For instance, suppose that vS is increasing (resp.,

13Indeed, notice that I(F τ
0 , F

τ

0) is compact under the weak-* topology, is a complete lattice under the
partial order ⪯, and is a convex subset of a linear space whose extreme points can readily be derived from
Lemma 1 and Lemma 2.
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decreasing). Then the lobbyist’s optimal signal is F
1/2

0 (resp., F
1/2
0 ). Alternatively, suppose

that Ω = [0, 1] and that vS is upper-semicontinuous and quasi-concave with peak at ω0 ∈
[0, F−1

0 (τ)].14 Let H∗∗ ∈ I(F 1/2
0 , F

1/2

0 ) be defined as:

H∗∗(ω) :=

{
0, if ω < ω0

F
1/2
0 (ω), if ω ≥ ω0

.

Then H∗∗ is a solution to the lobbyist’s problem. In general, for any (measurable) function

vS : R → R, note that, by the same arguments as in the proof of Lemma 1, the lobbyist’s

problem can be characterized by solving

sup
H∈I∗

1/2

∫
R
vS(ω)H(dω).

Thus, by Lemma 1 and Lemma 2, it suffices to search for the optimal signal within the class

of distributions satisfying (3).

Supplying Product Information

The second example from Kamenica and Gentzkow (2011) has a seller choosing the informa-

tion structure of its product when faced with a single potential buyer. Consider the following

general framework for this environment: There is one seller and one buyer; the seller has unit

supply, whereas the buyer has unit demand. The product has characteristic θ ∈ Θ that is

unobservable to the buyer, and the buyer has a private type x ∈ X. Both θ and x are inde-

pendently drawn from a common prior. The interpretation of θ and x is that θ describes the

product’s features, whereas x is the buyer’s personal taste. Given price p ≥ 0, characteristic

θ ∈ Θ, and type x ∈ X, the buyer’s indirect utility of having the product is u(θ, x, p) ∈ R.

The buyer can choose whether to buy the product or retain an outside option worth ū ∈ R.

The seller chooses a price p and a signal that informs the buyer about θ so as to maximize

revenue.

Kamenica and Gentzkow (2011) consider a special case in which the buyer is an Expected

Utility maximizer, has quasi-linear preferences and no private type, and Θ = R+, ū = 0,

u(θ, x, p) = θ − p. They then conclude that an optimal signal for the seller, given price p,

is to induce at most two signal realizations—one “low”, one “high”—such that the buyer’s

posterior expected gains from trade under the “high” signal realization equals max{p,E[θ]}.
When the seller also optimizes with respect to price, it then follows that the seller’s optimal

14In the Online Appendix, we also characterize the solutions when vS is quasi-convex, which have the same
feature as H∗ defined in (5) qualitatively.
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price equals the expected gains from trade and the optimal signal reveals no information, as

this allows the seller to fully extract the surplus.15

Our main result enables us to explore different specifications of the general model above

and extend the results in Kamenica and Gentzkow (2011) by allowing for private tastes.

Suppose that Θ = X = [0, 1], ū = 0, the buyer is an Expected Utility maximizer, and

u(θ, x, p) = v · 1{θ ≥ x} − p for all θ, x, and p, for some v ≥ 0. Let F0 and G denote the

priors from which θ and x are drawn, respectively. An interpretation of this payoff structure

is that the buyer owns a complement of the seller’s product that is only compatible with

certain characteristics. For example, the buyer owns a hardware of generation x ∈ [0, 1] that

is only compatible with software of generation θ ≥ x.

Given any posterior F for θ, the buyer would purchase the product whenever v(1 −
F (x−))− p ≥ 0, which in turn is equivalent to F−1((1− p/v)+) ≥ x. As a result, given price

p ≥ 0, the seller’s optimal signal can be characterized by the solution of

sup
H∈I(F (1−p/v)

0 ,F
(1−p/v)
0 )

∫ 1

0

(1−H(x−))G(dx),

and hence, the optimal revenue given p is

p

∫ 1

0

(1− F
(1−v/p)

0 (x))G(dx). (9)

The optimal price then maximizes (9). It is noteworthy that, unlike the model without

private types, the seller does not fully extract the surplus and discloses some information

about θ to the buyer.16

Another specification of the general model above is to suppose that the buyer has Quantile-

Maximizing preferences, rather than maximizing expected utility. This model of preferences

was developed in Manski (1988), Chambers (2007), Rostek (2010), and de Castro and Galvao

(2021). When selecting among lotteries, a quantile-maximizing individual chooses the one

that gives the highest quantile of the utility distribution. For example, the person might

15A version of this problem with consumer search or constant marginal cost is also studied by Anderson
and Renault (2006).

16This specification essentially coincides with example 3 of Kolotilin, Corrao, and Wolitzky (2022), which,
in turn, is equivalent to a persuasion model where both the state and the receiver’s action are in [0, 1]
and uR(ω, a) = min{a, ω} − κa, for some κ ∈ [0, 1]. In the meantime, the sender has an increasing, state-
independent payoff. We thank Alexander Wolitzky for pointing out this connection. While the main interest
of Kolotilin, Corrao, and Wolitzky (2022) is to explore the qualitative features of optimal signals under more
general receiver payoffs, our main result complements theirs since the characterization of Theorem 1 allows us
to generalize the sender’s payoff to non-monotone functions of actions, in which case “single-dipped” signals
are not optimal in general, as demonstrated in Section 4.2 and in the Online Appendix.
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maximize median utility instead of mean utility, as she would if she exhibited Expected

Utility preferences.

Specifically, suppose that u(θ, x, p) = ũ(θ, p) for some ũ : Θ × R+ → R so that the

buyer has no taste differentiation. Moreover, suppose that the buyer is a τ ∈ (0, 1)-quantile

maximizer, as defined by Rostek (2010). Under these assumptions, note that it is without

loss to represent a signal for θ by µ ∈ M(Fp), where Fp denotes the distribution of the buyer’s

utility given price p. Having Quantile-Maximizing preferences, the buyer will purchase the

product under a posterior F ∈ F if F−1(τ+) > ū and will not purchase if F−1(τ) < ū, for

some τ ∈ (0, 1). By Theorem 1, the seller’s problem can be written as

sup
H∈I(F τ

p ,F
τ
p)

p(1−Hτ (ū−)),

and hence, the seller’s optimal revenue given price p is p(1 − F
τ

p(ū
−)). The seller’s optimal

price can then be found by choosing p to maximize p(1 − F
τ

p(ū
−)). Here too, the seller

optimally discloses some information.17

Quantile-Based Cheap Talk with Transparent Motives

Another setting related to quantile-based persuasion problems is the class of quantile-based

cheap talk games with transparent motives. Consider the setting of Lipnowski and Ravid

(2020): A sender observes the state ω and can send a message to the receiver. The receiver

observes the message and then takes an action. The sender does not have commitment

power and has a state-independent payoff. Suppose further that the state ω and the action

a are both in R. Theorem 2 of Lipnowski and Ravid (2020) characterizes the sender’s best

equilibrium payoffs by the quasi-concave envelope of v̂ : F → R. Just as when the sender has

commitment, computing this quasi-concave envelope can be challenging. Sharper analytical

solutions would require further specifications of the payoffs.

Theorem 1 allows us to further characterize the sender’s equilibrium payoffs under the

assumption that payoffs are “quantile-based” as defined in (6).18 Let the prior distribution

of the state ω be F0. Assume that supp(F0) = [0, 1] and that vS is upper-semicontinuous.

Note that for any v∗ ∈ R, the set {ω ∈ [0, 1]|vS(ω) < v∗} is open and hence can be written

as the union of countably many disjoint open intervals {(ωi
v∗ , ω

i
v∗)}

Iv∗
i=1 for some Iv∗ ≤ ∞.

17In practice, this optimal signal has the seller sharing information with the buyer to distinguish products,
conditional on the products having high values, but also retaining information to prevent the buyer from
completely discerning high-valued products from low-valued ones. For instance, the seller might disclose that
a handbag were made in Italy, but withhold the means of production (machine versus handmade).

18This can be achieved by assuming that the receiver’s optimal actions given posterior F are τ -quantiles
of F (e.g., uR(ω, a) = −|ω − a|).
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Theorem 1 of Lipnowski and Ravid (2020) implies that v∗ ≥ vS(F
−1
0 (τ)) is an equilibrium

payoff for the sender if and only if there exists a signal µ ∈ M and a selection r ∈ R
such that, for ω ∼ Hτ (·|µ, r), one has vS(ω) ≥ v∗ with probability 1. By Theorem 1, this

condition in turn is equivalent to the following: v∗ ≥ vS(F
−1
0 (τ)) is an equilibrium payoff for

the sender if and only if there exists H ∈ I(F τ
0, F

τ

0) such that H is constant on (ωi
v∗ , ω

i
v∗)

for all i. By Corollary 2, it follows that the sender’s equilibrium payoffs that are higher than

the babbling equilibrium payoff can be characterized by the set of v∗ ≥ vS(F
−1
0 (τ)) such that

F
τ

0(ω
i
v∗) ≤ F τ

0(ω
i
v∗) for all i.

For example, suppose that vS is (strictly) quasi-concave and F0 has full support. Without

loss of generality, suppose that the maximum of vS is attained at ω0 ≥ F−1
0 (τ) > 0. Then,

for any v∗ > vS(F
−1
0 (τ)), there exists a unique interval [ω, ω] with F−1

0 (τ) < ω, such that

vS(ω) ≥ v∗ if and only if ω ∈ [ω, ω]. Since F
τ

0(ω) > 0 = F τ
0(0), Corollary 2 implies that there

does not exist any H ∈ I(F τ
0, F

τ

0) that is constant on [0, ω]. Thus, the sender cannot achieve

any payoff higher than the babbling equilibrium payoff vS(F
−1
0 (τ)).

Nonetheless, the sender’s equilibrium payoff is not characterized by the quasi-concave

envelope of vS. (It is, however, characterized by the quasi-concave closure of v̂ according to

theorem 2 of Lipnowski and Ravid 2020.) To see this, suppose that τ = 1/2, that vS(ω) =

(ω − 1/2)2, and that F0 = U . In this setting, the quasi-concave envelope of vS is a constant

1/4. However, for any v∗ ≥ vS(1/2), vS(ω) ≤ v∗ if and only if ω ∈ [1/2−
√
v∗, 1/2+

√
v∗]. Thus,

the highest equilibrium payoff for the sender is v∗ such that
√
v∗ = 1/4, which equals 1/16 and

is smaller than 1/4. A more detailed argument can be found in the Online Appendix.

5.2 Optimal Market Segmentation with a Fixed Thickness Constraint

In addition to being a signal in Blackwell’s sense, µ ∈ M has another common interpretation

as a market segmentation that splits a single market into several segments to facilitate price

discrimination (see, for instance, Bergemann, Brooks, and Morris 2015; Haghpanah and Siegel

2020; Yang 2022; Haghpanah and Siegel forthcoming; Elliot, Galeotti, Koh, and Li 2022).

From this perspective, Theorem 1 enables an exploration of optimal market segmentation in

a two-sided market. When the market is two-sided, market segmentation involves another

dimension; namely, one needs to describe how segments on one side are matched with those

on the other. (See, for instance, Hagiu and Jullien 2011; de Cornière 2016; Condorelli and

Szentes 2022; Guinsburg and Saraiva 2022.)

Consider a two-sided market (e.g., ride sharing) for an object (e.g., a car ride). The

demand side is populated by a unit mass of agents (riders) who have unit demands for rides.

Their values ω for a ride are distributed according to a distribution F0 ∈ F . The supply

side is populated by a mass τ ∈ (0, 1) of agents (drivers) who have unit supply. Total
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supply is inelastic (e.g., during peak hours at a major airport). A third-party platform (a

ride-sharing app) can segment both sides of the market to affect prices, which are, in turn,

determined by the market-clearing condition in each segment. Specifically, µ ∈ M(F0) can be

regarded as a demand-side market segmentation. A segmentation µ induces market segments

{F |F ∈ supp(µ)}, and each segment is described by the distribution of riders’ values within

that segment.

For many practical reasons (e.g., regulation, fairness, corporate image, match efficiency,

or customer satisfaction), platforms can rarely segment both sides of the market arbitrarily.

Instead, they typically face several constraints when segmenting the market. One practical

constraint is that the market thickness must be held fixed across all market segments. In

this setting, where the supply is perfectly inelastic, a market thickness constraint means that

the sizes of segments on the demand side must completely determine the sizes of segments

on the supply side, so that the ratio of supply and demand remains τ in each segment.19

In this setting, Theorem 1 provides a way for observers (e.g., regulators or econometri-

cians) to verify whether the segmentation created by the platform adheres to the thickness

constraint. Verifying compliance with a fixed thickness constraint could be challenging, as it

requires full knowledge of how the market is segmented, which might be difficult to obtain.

Nonetheless, Theorem 1 implies that it is sufficient to observe the distribution of prices across

segments to check compliance. To see this, note that for any segment F ∈ F , given that

the ratio of supply and demand is τ , the implied market-clearing price for this segment must

be in Q(1−τ)(F ). (Notice that the function τ 7→ F−1(1 − τ) can be regarded as the inverse

demand of segment F .) As a result, a price distribution is consistent with the thickness

constraint only if it falls in I(F (1−τ)
0 , F

(1−τ)

0 ).

Furthermore, Theorem 1 provides a characterization of all possible outcomes that can be

induced by a market segmentation satisfying a fixed thickness constraint, which we present

in the next proposition.

Proposition 5. (p̄, s) ∈ R2 is a pair of average price and total surplus under some market

segmentation with fixed thickness τ ∈ (0, 1) if and only if

τ

∫ 1

0

F−1
0 (1− x) dx ≤ s ≤

∫ τ

0

F−1
0 (1− x) dx (10)

and ∫ 1

0
F−1
0 (1− x) dx− s

1− τ
≤ p̄ ≤ s

τ
. (11)

19Practically speaking, a thickness constraint would imply that all riders would have to wait approximately
the same time before being matched with a driver.
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Figure IV
Two-Sided Market Possible Outcomes

Proof. See Appendix A.5 ■

Figure IVA plots the set of feasible outcomes (p̄, s) among all possible segmentations.

An immediate consequence of Proposition 5 is a characterization of surplus division across

possible segmentations. Figure IVB plots this set, where the horizontal axis is the surplus

on the demand side and the vertical axis represents total transaction revenue.

From Proposition 5, if the platform’s objective is to maximize total sales revenue, the

optimal market segmentation leaves riders zero surplus and generates revenue
∫ τ

0
F−1
0 (1 −

x) dx, which is exactly the same as that under first-degree price discrimination (point A in

Figure IVB). Therefore, when the platform only cares about sales revenue, the thickness

constraint is, in fact, irrelevant, and the platform can extract all the surplus.

Alternatively, the platform might also have concern over rider surplus, perhaps to attract

users and expand its network. In this case, the platform’s objective function would be

increasing in both sales revenue and rider surplus, which implies that the optimal market

segmentation must generate a surplus division on the line segment connecting A and B in

Figure IVB.

6 Application III: Econometrics

In this section, we apply our main result to subjects in econometrics. To this end, consider a

random vector (Y,X) ∈ R×RK on an underlying probability space with probability measure
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P.20 Our main interest is about the conditional distribution of Y given realizations X = x ∈
RK , which we denote by FY |X=x. Note that for each x ∈ RK , FY |X=x can be regarded as a

realized posterior induced by the joint distribution of (Y,X).

6.1 Model Misspecification and Partial Identification in Quantile Regression

Koenker and Bassett Jr (1978) introduced the econometric approach of quantile regression,

which models the quantiles of the conditional distribution of a response variable as a function

of observed covariates. Our characterization can evaluate whether a presumed model for the

conditional quantiles is mis-specified.

In particular, consider a response variable Yi and K-dimensional covariate vector Xi. The

observations {Yi, Xi}Ni=1 are independently and identically drawn. The marginal distribution

of Yi is either known from the literature or can be correctly estimated to be F0 ∈ F . Consider

now the τ -quantile function gτ : RK → R such that

gτ (x) ∈ Qτ (FYi|Xi=x), ∀x ∈ RK

Quantile regression aims to estimate the function gτ using the sample. To facilitate the

analysis and maintain tractability, econometricians often impose some further assumptions

on the functional form of gτ . A commonly used model is the linear model gτ (x) = (1, x′)β,

for some β ∈ RK+1. However, these models may potentially be mis-specified. Theorem 1

provides a simple test for model mis-specification.

Consider the (potentially mis-specified) linear quantile regression model gτ (x) = (1, x′)β.

The estimand under this model solves the minimization problem

min
β∈RK+1

E[ρτ (Yi − (1, X ′
i)β)], (12)

where ρτ (u) := u (τ − 1 {u < 0}) is the tilted absolute value function.

From Theorem 1, the linear model is correctly specified under P only if the distribution

of (1, X ′
i)β

∗ is in I(F τ
0, F

τ

0), where β∗ is the solution to (12). An econometrician could test

for model mis-specification using only knowledge of the marginal of Yi. If the empirical

distribution of (1, X ′
i)β

∗ fell outside the interval I(F τ
0, F

τ

0), there would be strong evidence

of mis-specification. A comparison of the empirical quantiles or a Kolmogorov–Smirnov

test are two ways to implement the evaluation. The reliance on information from just the

marginal of Yi allows one to bypass estimation of the joint distribution of (Yi, Xi), which may

20Throughout this section, we hold fix this probability space and assume that it is rich enough relative to
the random variable Y in the sense of definition 2 of Yang (2020). That is, the probability space restricted
to any pre-image of Y is isomorphic to a unit interval with the Lebesgue measure.
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be computationally demanding. Meanwhile, as the test does not exploit any conditioning

information from Xi, which would have restricted the set of eligible models, the test has the

advantage of presenting low Type-I error, but also the disadvantage of having low power.

When the number of covariates K = 1 and the marginals of both Xi and Yi are known,

an econometrician can go beyond evaluating model mis-specification to partially identifying

the quantile function gτ (Xi). Suppose now that Xi ∼ G and Yi ∼ F0. Taking a concrete

example, one might have Yi representing income and Xi standing for years of schooling,

but the two variables are potentially from two non-overlapping samples of the population.

Estimation of economic models that involve Yi and Xi originating from different samples is

part of the econometrics of data combination (Ridder and Moffitt 2007).

If gτ is known to be increasing (such as wages increasing in years of schooling), then, for

any ω ∈ R, the probability that the conditional quantile registers at or below ω, given by

P(gτ (Xi) ≤ ω), is simply G(g−1
τ (ω)). As a result, by Theorem 1, it must be that G ◦ gτ ∈

I(F τ
0, F

τ

0), and hence, for all ω ∈ R,

(F τ
0)

−1 ◦G(ω) ≤ gτ (ω) ≤ (F
τ

0)
−1 ◦G(ω), (13)

for all ω ∈ R. Proposition 6 below formalizes this observation and provides a non-parametric

partial identification of the function gτ .

Proposition 6 (Identification Set). For any τ ∈ (0, 1) and for any increasing function

gτ : R → R, the following are equivalent:

1. There exists a random variable X such that the marginal of X is G and gτ (X) ∈
Qτ (FY1|X) with probability 1.

2. (F τ
0)

−1 ◦G(ω) ≤ gτ (ω) ≤ (F
τ

0)
−1 ◦G(ω), for all ω ∈ R.

Proof. The proof for 1 implying 2 follows immediately from Theorem 1 and the fact that gτ

is increasing. To see that 2 implies 1, consider any increasing function gτ satisfying (13). Let

H(ω) := G(g−1
τ (ω)) for all ω ∈ R. Then, by Theorem 1, H ∈ I(F τ

0, F
τ

0) implies that there

exists a signal µ ∈ M and a selection rule r ∈ R such that H(ω) = Hτ (ω|µ, r) for all ω ∈ R.

As ω ∈ R, theorem 2 of Yang (2020) ensures that there exists a random variable X̃ such that

P(FY1|X̃ ∈ A) = µ(A) for all measurable A ⊆ F , and

P(g̃τ (X̃) ≤ ω) = H(ω),

for all ω ∈ R, with g̃τ being an increasing function such that g̃τ (x) ∈ Qτ (FY1|X̃=x) for all

x ∈ R. Now define a random variable X := g−1
τ (g̃τ (X̃)). We claim that the marginal of X
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is G and that gτ (X) ∈ Qτ (FY1|X) with P-probability 1. Indeed, since both g̃τ and gτ are

increasing,

P(X ≤ x) = P(g−1
τ (g̃τ (X̃)) ≤ x) = P(g̃τ (X̃) ≤ gτ (x)) = H(gτ (x)) = G(x).

In the meantime, since g−1
τ ◦g̃τ is increasing, it must be that Qτ (FY1|X̃=x) = Qτ (FY1|X=g−1

τ ◦g̃τ (x))

for P ◦ X̃−1-almost all x ∈ R. Together with gτ (X) = g̃τ (X̃), it then follows that gτ (X) ∈
Qτ (FY1|X) with P-probability 1. This completes the proof.

■

Proposition 5 provides a complete characterization of the identification set of gτ . That is,

under the given assumptions (i.e., only the marginals of Yi, Xi are known and gτ is only known

to be increasing), the quantile function gτ must satisfy (13). Conversely, for any function

gτ satysfying (13), there exists a model that meets the given assumptions and induces a

quantile function gτ . This identification result requires neither parametric assumptions, nor

knowledge about the joint distribution, except for monotonicity of the quantile function. It

allows an econometrician to make inferences on the conditional distribution of, say, income

on schooling, just from knowing the marginal distributions of wages and school years, with

the two potentially being measured from different population samples.

6.2 Inferences of Joint Distributions from Marginals

As hinted above, one common obstacle faced by econometricians is the lack of informa-

tion about the joint distribution, even though information about the marginals is available.

Specifically, given two random variables Y,X, with known marginals F0 and G, respectively,

what can one infer about their joint?

Horowitz and Manski (1995) provide a characterization when F0 has a positive den-

sity on its support and when X is binary, which might refer to the realization of an event

that contaminates the dataset, or enrollment in the prescribed treatment of an experiment.

If X ∈ {0, 1} and P(X = 1) = p ∈ (0, 1/2], the authors provide sharp bounds on the

conditional distributions. In particular, for any τ ∈ (0, 1), they show that Qτ (FY |X=1) ⊆
[F−1

0 (τp), F−1
0 (τp+1−p)]. Moreover, for each of the two bounds F−1

0 (τp) and F−1
0 (τp+1−p),

there exists a joint distribution that attains the bound. Our Theorem 1 extends this result

by demonstrating that any distribution within these bounds is attainable by some joint

distribution of Y and X, with X being binary, as stated below.

Proposition 7. For any τ ∈ (0, 1), for any random variable Y with distribution F0, and

for any ω ∈ [F−1
0 (τp), F−1

0 (τp + 1 − p)], there exists a random variable X ∈ {0, 1} with
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P(X = 1) = p such that ω ∈ Qτ (FY |X=1).

Proof. If ω ≤ (F
τ

0)
−1(p), let

Hp(y) :=


0, if y < ω

p, if y ∈ [ω, (F
τ

0)
−1(p))

1, if y ≥ (F
τ

0)
−1(p)

,

for all y ∈ R. Meanwhile, if ω > (F
τ

0)
−1(p), let

H1−p(y) :=


0, if y < (F τ

0)
−1(1− p)

p, if y ∈ [(F τ
0)

−1(1− p), ω)

1, if y ≥ ω

,

for all y ∈ R. Note that F−1
0 (τp) = (F τ

0)
−1(p) and F−1

0 (τp+1−p) = (F
τ

0)
−1(1−p). Therefore,

if ω ≤ (F
τ

0)
−1(p), then Hp ∈ I(F τ

0, F
τ

0); while if ω > (F
τ

0)
−1(p), then H1−p ∈ I(F τ

0, F
τ

0). By

Theorem 1, there always exists someH ∈ Hτ with binary support that assigns probability p to

ω, which, in turn, implies that there exists a random variable X ∈ {0, 1} with P(X = 1) = p

such that ω ∈ Qτ (FY |X=1), as desired. ■

In the meantime, Cross and Manski (2002) discuss identification of so-called long re-

gressions when the short conditional distributions are known, but the long ones are not.

The authors describe an environment in which each member of a population is associated

with a tuple (Y,X,Z), such that Y ∈ R, X takes values in a finite dimensional Euclidean

space, and Z belongs to a K-element finite set. The issue at hand is identification of the

long regression E[Y |X,Z] when the short conditional distributions P(Y |X) and P(Z|X) are

known, but the long conditional distribution P(Y |X,Z) is unknown. The language “long”

and “short” borrows from Goldberger (1991). In their article, the authors give bounds on

(E[Y |X,Z = zk])
K
k=1, though the bounds might not be sharp. Only in the special case when

both K = 2 and the response variable Y ∈ {0, 1}, do the authors completely identify the set

of (E[Y |X,Z = zk])
K
k=1. Our Theorem 1 complements this result: The conditional quantiles,

(Qτ (FY |X,Z=zk))
K
k=1, are completely identified for all K < ∞, even if |supp(Y )| = ∞.

Proposition 8. Let P0 := 0 and let Pk :=
∑k

j=1 pk for all k ∈ {1, . . . , K}. For any random

variable Y with distribution F0, for any τ ∈ (0, 1), and for any vector q = (qk)
K
k=1 ∈ RK with

q1 ≤ . . . ≤ qK, the following are equivalent.

1. There exists a random variable Z with support {zk}Kk=1 and P(Z = zk) = pk such that

qk ∈ Qτ (FY |Z=zk) for all k ∈ {1, . . . , K}.
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2. qk ∈ [(F τ
0)

−1(Pk), (F
τ

0)
−1(P+

k−1)].

Proof. To see that 1 implies 2, consider any such random variable Z. Let H be the CDF of

the induced probability distribution over {qk}Kk=1. Theorem 1 implies that H ∈ I(F τ
0, F

τ

0),

which in turn implies 2.

Conversely, to see that 2 implies 1, consider any q = (qk)
K
k=1 with q1 ≤ . . . ≤ qK . Define

a CDF H as follows:

H(ω) :=


0, if ω < q1

Pk, if ω ∈ [qk−1, qk), k ∈ {2, . . . , K}
1, if ω ≥ qK

,

for all ω ∈ R. Then, 2 implies H ∈ I(F τ
0, F

τ

0). By Theorem 1, H ∈ Hτ , and thus there exists

a random variable Z with supp(Z) = {zk}Kk=1 and P(Z = zk) = pk such that qk ∈ Qτ (FY |Z=zk)

for all k ∈ {1, . . . , K}, as desired. ■

It is noteworthy that although the statement of Proposition 8 does not include the control

variable X for the short regression, there are no restrictions on the marginal of Y . Therefore,

the conditional quantiles (Qτ (FY |X,Z=zk))
K
k=1 can be identified by applying Proposition 8 to the

conditional distribution of Y given each realization of X. Moreover, the monotonicty restric-

tion in Proposition 8 is merely a normalization. The identification set of (Qτ (FY |X,Z=zk))
K
k=1

can be obtain by applying permutations on the result of Proposition 8, as illustrated by

Figure V for the case of K = 2, F0 = U , and τ = 1/2.

q2

q1
1

0

1

1
2

1/2

p
2

1+p
2

p/2

(1+p)/2

Figure V
Identification Set of (Q1/2(FY |Z=zk))

2
k=1
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7 Application IV: Finance and Accounting

7.1 Macroprudential Policy

Macroprudential policy deals with regulatory practices that aim at ensuring, as best as possi-

ble, the stability of the financial system as a whole (Galati and Moessner 2013). A commonly

suggested policy suitable to this aim is to link a large financial institution’s required amount

of equity capital to its contribution to systemic risk, which is the risk of the entire financial

system collapsing (Brunnermeier, Gorton, and Krishnamurthy 2012). Several measures of

systemic risk abound, but a popular one is the Conditional Value at Risk from Adrian and

Brunnermeier (2016), denoted CoV aR. The authors define this measure as the Value at Risk

(VaR) of the financial system, conditional on a particular institution being under financial

distress. In this context, the VaR would be the loss in the market value of the financial

system that is exceeded with a certain (tail) probability (Duffie and Pan 1997).

But CoV aR is inherently a quantile of a conditional probability distribution. Our char-

acterization lets us describe the set of all possible CoV aR—and, hence, equity capital

requirements—of a financial institution without knowing the exact correlation structure be-

tween the institution’s returns and the system’s returns. Knowing this range informs the

regulator whether the macroprudential policy is reasonable or even feasible given the per-

ceived appetite of the equity market to supply capital.

Specifically, let R ∼ F0 be the return of the financial system. The VaR of the system is

defined as F−1
0 (τ) for some τ ∈ (0, 1) (e.g., τ = 0.05). Furthermore, let Ri ∼ Fi be financial

institution i’s return and let Xi := 1{Ri ≤ ri} signify the event that institution i’s return is

below some threshold ri < 0, which puts the institution in financial distress. The CoV aR

of financial institution i would simply be a τ -quantile of the distribution of R conditional

on Xi = 1. Suppose that a financial regulator requires each institution i to have equity

capital gi(ω) if its CoV aR is ω, where gi is a decreasing function. (See Orlov, Zryumov, and

Skrzypacz (2020) for a microfoundation for this kind of capital requirement.) An immediate

implication of Theorem 1 (more precisely, Proposition 7) is a complete characterization of

all possible equity capital requirements of the financial institution that can arise under some

correlation structure between Ri and R, given the marginals F0 and Fi. According to Propo-

sition 7, institution i is required to issue equity capital e under some correlation structure

if and only if e ∈ [gi(F
−1
0 (τpi)), gi(F

−1
0 (τpi + 1 − pi))], where pi denotes the probability of

Xi = 1 under Fi.
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7.2 Classification Shifting

McVay (2006) describes a management tool to manipulate accounting earnings that involves

deliberately misclassifying items within a firm’s income statement. McVay refers to this

practice as classification shifting, and she finds evidence consistent with managers moving

expenses from the category of core expenses (e.g., cost of goods sold) to the category of

special items (e.g., fines). Mangers are thought to engage in this conduct to overstate “core”

earnings and meet Wall Street analyst earnings forecasts, as special items tend to be excluded

from analysts’ definitions of earnings. Fan, Barua, Cready, and Thomas (2010) document

further evidence of classification shifting, and Dye (2002) presents a theoretical model of

classification manipulation.

H(ω)

ω
∞

0

1

F−1
0 (τ)

Figure VI
A Measure of Misclassification

With our result, we can provide a necessary condition for an auditor to undertake an

inspection for classification shifting. Consider the following scenario: A manager classifies

an extensive set of expenses into categories (e.g., core versus special items) and is requested

to report a τ -quantile of each category to an auditor. Each expense belongs to a rightful

category consistent with Generally Accepted Accounting Principals (GAAP). A certain dollar

threshold of misclassification is considered material and constitutes accounting fraud. The

auditor can observe the distribution of all expenses (in dollars), but a costly audit is required

to verify each expense’s classification. The problem for the auditor is to determine whether

a closer inspection of the manager’s classification is warranted.

Specifically, suppose the dollar threshold of misclassification to reach accounting fraud is
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K > 0. Denote the distribution of expenses by F0. Suppose that the auditor can select any

τ ∈ (0, 1) and request the manager to report a τ -quantile of each category. Then, for any

τ ∈ (0, 1), a report under any classification of spending induces a distribution of posterior

τ -quantiles.

Let Gτ denote the distribution of τ -quantiles under the correct classification. If H is

the distribution of τ -quantiles induced by the manager’s classification, then the amount of

misclassification, in the unit of dollars, can be measured as∫ 1

0

∣∣G−1
τ (q)−H−1(q)

∣∣ dq.
Figure VI illustrates a distribution of quantiles induced by a classification with two categories.

The manager’s classification is represented in black, and the correct classification is in gray.

By Theorem 1, both the distribution of τ -quantiles induced by the manager’s classification

and by the correct classification must reside within the first-order stochastic dominance

interval I(F τ
0, F

τ

0). As a result, whenever

sup
τ∈[0,1]

∫ ∞

0

∣∣F τ

0(ω)− F τ
0(ω)

∣∣ dω ≤ K, (14)

no audit is warranted, since the left-hand side of (14) is the largest possible amount of

misclassification.

8 Conclusion

We characterize the distributions of all possible posterior quantiles in a general environment.

Unlike the distributions of posterior means, which are known to be mean-preserving con-

tractions of the prior, the distributions of posterior quantiles reside between two first-order

stochastic dominance bounds that are truncations of the prior. We apply this characteri-

zation to many economic scenarios, ranging across political economy, Bayesian persuasion,

industrial organization, econometrics, finance, and accounting.

Other applications involving posterior quantiles undoubtedly exist. When consumers’

values or firms’ marginal costs follow distributions, different points on the inverse supply and

demand curves are quantiles, which opens the door to further applications in consumer or

firm theory. Inequality is often measured as an upper percentile of the wealth or income

distribution, making it eligible for analysis. Likewise, settings in which threshold behavior

is important, such as in theories of bank runs, protests, fads and fashions, or tipping points,

are yet other directions for future work.
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Appendix

A.1 Proof of Lemma 1

Since the CDF of the uniform distribution on [0, 1] is in F , Hτ = I(F τ
0 , F

τ
0) for all F0 ∈ F implies H∗

τ ⊇ I∗
τ .

Conversely, suppose that H∗
τ ⊇ I∗

τ . Consider any H ∈ I(F τ
0 , F

τ
0). Let H̃(q) := H(F−1

0 (q)) for all q ∈ R.

Then H̃ ∈ I∗
τ . Therefore, there exists µ̃ ∈ M(U) and r̃ ∈ R such that

H̃(q) = Hτ (q|µ̃, r̃) =
∫
F
r̃((−∞, q]|F )µ̃(dF ),

for all q ∈ [0, 1]. For any F0 ∈ F , define µ and r as

µ(A) := µ̃({F ∈ F|F ◦ F0 ∈ A}),

for all measurable A ⊆ F , and

r((−∞, ω]|F, τ) := r̃((−∞, F0(ω)]|F ◦ F−1
0 , τ),

for all ω ∈ R, for all τ ∈ (0, 1), and for all F ∈ F . We claim that µ ∈ M(F0) and r ∈ R. Indeed, for any

measurable A ⊆ F , µ(A) = µ̃({F ∈ F|F ◦ F0 ∈ A}) ≥ 0. Meanwhile, µ(F) = µ̃({F ∈ F|F ◦ F0 ∈ F}) =
µ̃(F) = 1. Furthermore, for any measurable set A ⊆ F , let

F−1
0 ◦A := {F−1

0 ◦ F |F ∈ A},

and note that F ◦ F0 ∈ A if and only if F ∈ F−1
0 ◦ A for all F ∈ F . Thus, for any disjoint collection of

measurable sets {An} ⊆ F ,

µ

( ∞⋃
n=1

An

)
= µ̃

({
F ∈ F

∣∣∣∣F ◦ F0 ∈
∞⋃
n=1

An

})
=µ̃

({
F ∈ F

∣∣∣∣F ∈ F−1
0 ◦

∞⋃
n=1

An

})

=

∞∑
n=1

µ̃(F−1
0 ◦An)

=
∞∑
n=1

µ̃({F ∈ F|F ◦ F0 ∈ An})

=

∞∑
n=1

µ(An).

Consequently, µ is indeed a probability measure on F . In the meantime, for any F ∈ F ,

r((−∞, F−1(τ))|F, τ) = r̃((−∞, F0(F
−1(τ))|F ◦ F−1

0 , τ) = 0

and

r((−∞, F−1(τ+)]|F, τ) = r̃((−∞, F0(F
−1(τ+))|F ◦ F−1

0 , τ) = 1.
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Thus, supp(r(·|F, τ)) = Qτ (F ) for all F ∈ F and for all τ ∈ (0, 1), and hence r ∈ R.

In addition, for any ω ∈ R,∫
F
F (ω)µ(dF ) =

∫
F
F (F0(ω))µ̃(dF ) = F0(ω),

which in turn implies that µ ∈ M(F0).

As a result, for any ω ∈ R,

H(ω) = H̃(F0(ω)) =

∫
F
r̃((−∞, F0(ω)]|F, τ)µ̃(dF ) =

∫
F
r̃((−∞, F0(ω)]|F ◦ F−1

0 , τ)µ(dF )

=

∫
F
r((−∞, ω]|F, τ)µ(dF )

=Hτ (ω|µ, r).

Therefore, H ∈ Hτ . This completes the proof. ■

A.2 Proof of Lemma 2

Embed I∗
τ ⊆ F into the collection L1([0, 1]) of integrable functions on [0, 1]. Note that I∗

τ is a convex

subset of a normed linear space L1([0, 1]). Consider any H ∈ I∗
τ that takes the form of (3), and any

Ĥ ∈ L1([0, 1]) such that Ĥ(ω̃) ̸= 0 for some ω̃ ∈ [0, 1]. Suppose that H(ω̃) ∈ {U τ (ω̃), U
τ
(ω̃)}. Then clearly

either H(ω̃) + Ĥ(ω̃) > U τ (ω̃) or H(ω̃) − Ĥ(ω̃) < U
τ
(ω̃) and hence, either H + Ĥ /∈ I∗

τ or H − Ĥ /∈ I∗
τ .

Meanwhile, suppose that ω̃ ∈ [xi, xi) for some i ∈ I or ω̃ ∈ [y
j
, yj) for some j ∈ J . If either H + Ĥ /∈ F

or H − Ĥ /∈ F , then clearly either H + Ĥ /∈ I∗
τ or H − Ĥ /∈ I∗

τ . If, on the other hand, both H + Ĥ and

H − Ĥ are in F , then it must be that either H(ω) + Ĥ(ω) = U τ (xi) + Ĥ(ω̃) > U τ (xi) for all ω ∈ [xi, xi), or

H(ω)− Ĥ(ω) = U
τ
(yj)− Ĥ(ω̃) < U

τ
(yj), for all ω ∈ [y

j
, yj). Therefore, there must exist ω̂ ∈ R such that

either H(ω̂) + Ĥ(ω̂) /∈ I∗
τ or H(ω̂)− Ĥ(ω̂) /∈ I∗

τ .

Conversely, suppose that H ∈ I∗
τ does not take form of (3). Then there exists ω < ω and η < η such

that H(ω−) ≤ η ≤ H(ω), H(ω−) ≤ η ≤ H(ω); that U
τ
(ω) ≤ η < η ≤ U τ (ω); and that η < H(ω) < η for

some ω ∈ (ω, ω). Then, since the set of extreme points of nondecreasing functions that map from [ω, ω] to

[η, η] must only take values in {η, η} (see, for instance, lemma 2.7 of Börgers 2015), there exists a non-zero,

integrable function H̃ : [ω, ω] → [η, η] such that both H+ H̃ and H− H̃ are nondecreasing, right-continuous

functions from [ω, ω] to [η, η]. As a result, for any ω ∈ [ω, ω], it must be that

max{H(ω) + H̃(ω), H(ω)− H̃(ω)} ≤ η ≤ U τ (ω) ≤ U τ (ω) (A.15)

and that

min{H(ω) + H̃(ω), H(ω)− H̃(ω)} ≥ η ≥ U
τ
(ω) ≥ U

τ
(ω), (A.16)

for all ω ∈ [ω, ω]. Now let Ĥ : [0, 1] → R be defined as

Ĥ(ω) :=

{
H̃(ω), if ω ∈ [ω, ω]

0, otherwise
,

35



for all ω ∈ [0, 1]. Clearly, Ĥ ∈ L1([0, 1]). Moreover, for any ω ∈ [0, 1], from (A.15) and (A.16), together

with H ∈ I∗
τ , it follows that

U
τ
(ω) ≤ min{H(ω) + Ĥ(ω), H(ω)− Ĥ(ω)} ≤ max{H(ω) + Ĥ(ω), H(ω)− Ĥ(ω)} ≤ U τ (ω),

for all ω ∈ [0, 1]. Meanwhile, since η ∈ [H(ω−), H(ω)] and η ∈ [H(ω−), H(ω)], it must be that

H(ω) + Ĥ(ω) = H(ω)− Ĥ(ω) = H(ω) ≤ H(ω−) ≤ η,

for all ω ≤ ω; while

H(ω) + Ĥ(ω) = H(ω)− Ĥ(ω) = H(ω) ≥ H(ω) ≥ η,

for all ω ≥ ω. As a result, both H + Ĥ and H − Ĥ are nondecreasing and right-continuous. It then follows

that H + Ĥ ∈ I∗
τ and H − Ĥ ∈ I∗

τ , and hence H is not an extreme point of I∗
τ . This completes the proof. ■

A.3 Proof of Theorem 1

To show that Hτ ⊆ I(F τ
0 , F

τ
0), consider any H ∈ Hτ . Let µ ∈ M and any r ∈ R be a signal and a selection

rule, respectively, such that Hτ (·|µ, r) = H. By the definition of Hτ (·|µ, r), it must be that, for all ω ∈ R,

H(ω|µ, r) ≤ µ({F ∈ F|F−1(τ) ≤ ω}) = µ({F ∈ F|F (x) ≥ τ}).

Now consider any ω ∈ R. Clearly, µ({F ∈ F|F (ω) ≥ τ}) ≤ 1, since µ is a probability measure. Moreover, let

M+
ω (q) := µ({F ∈ F|F (ω) ≥ q}) for all q ∈ [0, 1]. From (1), it follows that the left-limit of 1−M+

x is a CDF

and a mean-preserving spread of a Dirac measure at F0(ω). Therefore, whenever τ ≥ F0(ω), then M+
ω (τ) can

be at most F0(ω)/τ to have a mean of F0(ω).
21 Together, this implies that µ({F ∈ F|F (x) ≥ τ}) ≤ F τ

0(ω)

for all ω ∈ R.

At the same time, by the definition of Hτ (·|µ, r), it must be that, for all ω ∈ R,

Hτ (ω−|µ, r) ≥ µ({F ∈ F|F−1(τ+) < ω}) = µ({F ∈ F|F (x) > τ}).

Now consider any ω ∈ R. Since µ is a probability measure, it must be that µ({F ∈ F|F (ω) > τ}) ≥ 0.

Furthermore, let M−
ω (q) := µ({F ∈ F|F (ω) > q}) for all q ∈ [0, 1]. From (1), it follows that 1 − M−

x is

a CDF and a mean-preserving spread of a Dirac measure at F0(ω). Therefore, whenever τ ≤ F0(ω), then

M−
ω (τ) must be at least (F0(ω)− τ)/(1− τ) to have a mean of F0(ω).

22 Together, this implies that µ({F ∈
F|F (ω) > τ}) ≥ F

τ
0 for all ω ∈ R, which, in turn, implies that F

τ
0(ω) ≤ Hτ (ω−|µ, r) ≤ Hτ (ω|µ, r) ≤ F τ

0(ω)

for all ω ∈ R, as desired.

To prove that I(F τ
0 , F

τ
0) ⊆ Hτ , by Lemma 1, it suffices to show that I∗

τ ⊆ H∗
τ . To this end, we first

show that for any extreme point H of I∗
τ , there exists a signal µ̃ ∈ M(U) and a selection rule r̃ ∈ R such

that H(ω) = Hτ (ω|µ, r) for all ω ∈ R. Consider any extreme point H of I∗
τ . By Lemma 2, H must take

21More specifically, to maximize the probability at τ , a mean-preserving spread of F0(ω) must assign probability
F0(ω)/τ at τ , and probability 1− F0(x)/τ at 0.

22More specifically, to minimize the probability at τ , a mean-preserving spread of F0(x) must assign probability
(F0(ω)− τ)/(1− τ) at 1, and probability 1− (F0(ω)− τ)/(1− τ) at 0.
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the form of (3) for some x, x, y, y ∈ [0, 1] and countable sequences {xi, xi}i∈I and {y
j
, yj}j∈J , such that

x ≤ xi ≤ xi ≤ xi+1 ≤ x < y ≤ y
j
≤ yj ≤ y

j+1
≤ y for all i ∈ I, j ∈ J . Now define two classes of

distributions, {Uω}ω∈[0,x] and {Uω}ω∈[y,1], as follows:

Uω(x) :=


0, if x < ω
x

y−τ+x , if x ∈ [ω, τ)

x−τ+x
1−y+x , if x ∈ [τ, y)

1, if x ≥ y

; and U
ω
(x) :=


0, if x < x

x−x
1−y+τ−x , if x ∈ [x, τ)

τ−x
1−y+τ−x , if x ∈ [x, ω)

1, if x ≥ ω

.

Since U τ (x) = U
τ
(y), it follows that (1 − τ)x = τ(y − τ), and hence, Uω(x) = τ for all x ∈ [ω, y] and

U
ω
(x) = τ for all x ∈ [x, ω). As a result, Qτ (Uω) = [ω, y] for all ω ∈ [0, x] and Qτ (U

ω
) = [x, ω] for all

ω ∈ [y, 1]. Moreover, for any i ∈ I and for any j ∈ J , let U i and U
j
be defined as

U i(x) :=
1

xi − xi

∫ xi

xi

Uω(x) dω; and U
j
(x) :=

1

yj − y
j

∫ yj

y
j

U
ω
(x) dω,

for all x ∈ R. By construction, U i, U
j ∈ F and xi ∈ Qτ (U i), y

j
∈ Qτ (U

j
) for all i ∈ I and j ∈ J . Next, for

any ω ∈ supp(H), let Fω ∈ F be defined as23

Fω(x) :=


Uω(x), if ω ∈ [0, x]\ ∪i∈I [xi, xi]

U i(x), if ω ∈ [xi, xi]

U
ω
(x), if ω ∈ [y, 1]\ ∪j∈J [y

j
, yj ]

U
j
(x), if ω ∈ [y

j
, yj ]

,

for all x ∈ R.

Now define µ̃ as

µ̃({Fω ∈ F|ω ≤ x}) := H(x),

for all x ∈ R. By construction, supp(µ̃) = {Uω}ω∈[0,x]\∪i∈I [xi,xi] ∪ {U i}i∈I ∪ {Uω}ω∈[y,1]\∪j∈J [yi,yj ]
∪ {U j}j∈J .

Furthermore, for any x ∈ [0, 1], ∫
F
F (x)µ̃(dF ) =

∫ 1

0
Fω(x)H(dω) = x,

and hence µ̃ ∈ M(U). In the meantime, let r̃ : F → [0, 1] → ∆(R) be defined as

r̃(F, τ ′) :=

{
δ{max(Qτ ′ )}, if F = Fω, ω ∈ [y, 1]

δ{min(Qτ ′ )}, otherwise
,

23As a convention, define U i(x) := Uω(x) for all x if xi = xi = ω. Similarly, define U
j
(x) := U

ω
(x) for all x if

y
j
= yj = ω.
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for all F ∈ F and for all τ ′ ∈ [0, 1]. Then, for all x ∈ R,

Hτ (x|µ̃, r̃) =


0, if x < 0

µ̃(Fω|F−1
ω (τ) ≤ x), if x ∈ [0, x)

µ̃(Fω|F−1
ω (τ+) ≤ x), if x ∈ [y, 1)

1, if x ≥ 1

for all x ∈ R, and hence Hτ (ω|µ̃, r̃) = H(ω) for all ω ∈ R, as desired.

Lastly, let Γ be a collection of probability measures γ ∈ ∆(R × F) such that γ({(ω, F ) ∈ R × F|ω ∈
Qτ (F )} = 1 and ∫

R×F
F (ω)γ(dω̃,dF ) = U(ω),

for all ω ∈ R. Define a linear functional Ξ : Γ → F as

Ξ(γ)[ω] := γ((−∞, ω],F),

for all γ ∈ Γ and for all ω ∈ R. Then, since for any H̃ in the set of extreme points ext(I∗
τ ) of I∗

τ , there exists

µ̃ ∈ M(U) and r̃ ∈ R such that Hτ (ω|µ̃, r̃) = H̃(ω) for all ω ∈ R, it must be that ext(I∗
τ ) ⊆ Ξ(Γ).

Now consider any H ∈ I∗
τ . Since I∗

τ is a compact and convex set of a metrizable, locally convex

topological space, Choquet’s theorem implies that there exists a probability measure ΛH ∈ ∆(I∗
τ ) with

ΛH(ext(I∗
τ )) = 1 such that ∫

I∗
τ

H̃(ω)ΛH(dH̃) = H(ω),

for all ω ∈ R. Define a measure Λ̃H by

Λ̃H(A) := ΛH({Ξ(γ)|γ ∈ A}),

for all measurable A ⊆ Γ. Since ΛH(ext(I∗
τ )) = 1 and ext(I∗

τ ) ⊆ Ξ(Γ), Λ̃H is a probability measure on Γ.

For any ω ∈ R and for any measurable A ⊆ F , let

γ((−∞, ω], A) :=

∫
Γ
γ̃((−∞, ω], A)Λ̃H(dγ̃),

and let µ(A) := γ(R, A). By construction, for all ω ∈ R,∫
F
F (ω)µ(dF ) =

∫
Γ

(∫
R×F

F (ω)γ̃(dω̃,dF )

)
Λ̃H(dγ̃) = U(ω),

and hence µ ∈ M(U). Furthermore, by the disintegration theorem (c.f., Çinlar 2010, theorem 2.18), there

exists a transition probability r : F → ∆(R) such that γ(dω,dF ) = r(dω|F )µ(dF ). Since Λ̃H(Γ) = 1, it
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must be that r ∈ R. Finally, for any ω ∈ R, since Ξ is affine,

Hτ (ω|µ, r) = γ((−∞, ω],F) =Ξ(γ)[ω]

=

∫
Γ
Ξ(γ̃)[ω]Λ̃H(dγ̃)

=

∫
ext(I∗

τ )
H̃(ω)ΛH(dH̃)

=H(ω),

as desired. This completes the proof. ■

A.4 Proof of Proposition 4

Fix any α ∈ [1/2, 1]. We first prove that 1 implies 2. Consider any ω ∈ [ω(α), ω(α)]. If ω ∈ Q1/2(F0), then

2 must hold, since the map δ{F0} ∈ M and the selection rule that selects ω with probability 1 induces

a distribution of representatives that unanimously share an ideal position of ω. Now suppose that ω <

F−1
0 (1/2). If the distribution of representatives’ ideal positions is F

1/2
0 , then the share of representatives

whose ideal positions are closer to ω than to F−1
0 (1/2) would be 2F ((F−1(1/2) + ω)/2), which, in turn, is at

least α, as ω ≥ ω(α). Similarly, suppose that ω > F−1
0 (1/2+). If the distribution of representatives’ ideal

positions is F
1/2
0 , then the share of representatives whose ideal position is closer to ω than to F−1(1/2+)

would be 2(1− F ((F−1(1/2) + ω)/2)), which, in turn, is at least α, as ω ≤ ω(α). Therefore, by Theorem 1,

2 is satisfied for all ω ∈ [ω(α), ω(α)].

Conversely, to prove that 2 implies 1, fix any ω ∈ [0, 1] and suppose that there exists a map µ ∈ M
and a selection rule r ∈ R such that under H1/2(·|µ, r), the share of representatives with ideal positions

closer to ω than to either of F−1
0 (1/2) or F−1

0 (1/2+) is at least α. That is, H1/2((F−1
0 (1/2) + ω)/2|µ, r) ≥ α

if ω ≤ F−1
0 (1/2) and H1/2((F−1

0 (1/2+) + ω)/2|µ, r) ≤ 1− α if ω ≥ F−1
0 (1/2+). By Theorem 1, it then follows

that

2F0

(
F−1
0 (1/2) + ω

2

)
≥ H

1/2

(
F−1
0 (1/2) + ω

2

∣∣∣∣µ, r) ≥ α

if ω ≤ F−1
0 (1/2), and

2F0

(
F−1
0 (1/2) + ω

2

)
− 1 ≤ H

1/2

(
F−1
0 (1/2) + ω

2

∣∣∣∣µ, r) ≤ 1− α

if ω ≥ F−1(1/2+), which, in turn, implies ω(α) ≤ ω ≤ ω(α), as desired. ■

A.5 Proof of Proposition 5

Consider any market segmentation µ ∈ M and let (p̄, s) be the induced average price and total surplus,

respectively. Since the total surplus of this market is
∫ τ
0 F−1

0 (1 − x) dx, and since the smallest possible

surplus is the one induced by random matching, (10) follows. Furthermore, since

s =

∫
F

(∫ τ

0
F−1(1− x) dx

)
µ(dF ),
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and since the function

τ 7→
∫
F

(∫ τ

0
F−1(1− x) dx

)
µ(dF )

is concave, it must be that∫ 1
0 F−1

0 (1− x) dx− s

1− τ
≤ p̄ =

∫
F
F−1(1− τ)µ(dF ) ≤ s

τ
,

as desired.

Conversely, under any segmentation that induces the price distribution F
(1−τ)
0 , the average price equals∫ τ

0 F−1
0 (1−x) dx/τ , and total surplus equals

∫ τ
0 F−1

0 (1 − x) dx; whereas under any segmentation that induces

the price distribution F
(1−τ)
0 , the average price equals (

∫ 1
0 F−1

0 (1−x) dx−s)/(1−τ), and total surplus equals∫ τ
0 F−1

0 (1−x) dx.24 Lastly, under random matching, the average price is
∫ 1
0 F−1

0 (1−x) dx and total surplus

is τ
∫ 1
0 F−1

0 (1 − x) dx. As a result, since the set given by (10) and (11) is convex, and since the extreme

points of this set can be induced by some segmentation according to Theorem 1, every element of this set

can be induced by some segmentation as well. ■
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