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Abstract

We consider the problem of explaining models to a decision maker (DM) whose

payoff depends on a state of the world described by inputs and outputs. A true model

specifies the relationship between these inputs and outputs, but is not intelligible to

the DM. Instead, the true model must be explained via a finite-dimensional intelligible

model. If the DM maximizes their average payoff, then an explanation using ordinary

least squares is nearly as good as understanding the true model itself. However, if

the DM maximizes their worst-case payoff, then any explanation is no better than no

explanation at all.
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1 Introduction

People must often make decisions in environments that are too complicated for them to

understand. Policymakers evaluate social programs whose potential treatment effects are

heterogeneous, highly nonlinear, or have spillovers. Regulators design rules for complex

artificial intelligence models deployed in society without truly knowing how these models

work. How useful to decision makers can intelligible explanations of their environments be

instead?

In this paper, we study this question by considering the problem of a decision maker

(henceforth DM) who encounters a model that is too complicated to understand, and instead

must rely on an explanation of it. The DM’s payoff depends on their action and the state

of the world, where the latter is described by inputs and outputs. Inputs follow a known

distribution, and a single true model specifies the relationship between inputs and outputs.

For example, this true model could be the relevant data-generating process (DGP) that

occurs in nature or the DGP that results from a complex artificial system, such as a large

scale statistical or artificial intelligence (AI) model.

The key novel feature of our setting is that the space of true models is much larger than

the space of intelligible models that the DM can understand. For example, the space of true

models might contain all deep neural networks, but the space of intelligible models might

contain only nth degree polynomials. For the DM to incorporate information about the true

model into their choice of action, the true model must first be explained by mapping it to

an intelligible model. To focus on intelligibility as the main factor obscuring the model from

the DM, we abstract away from any sampling error that might be involved in this process

of explanation. Because several true models may be indistinguishable given an explanation,

the DM evaluates their payoff according to the worst-case model that is consistent with the

explanation when making a choice.

We require the mapping between the space of true models and the space of intelligible

models—what we call an explainer—to obey two criteria. First, if the true model is already

intelligible, the explainer should not explain it with a different model. Second, if the true

model is a mixture of two models generated by a randomization device that is independent

of the state (e.g., one model holding half the time; another model, the other half), then the

true model’s explanation should be a mixture of those two models’ explanations. Together,

these criteria amount to the explainer being a linear projection of the true model onto the

space of intelligible models. This class contains most tools used in practice to explain models,

including linear regression in policy evaluation and local approximations in machine learning.

The paper’s setting captures many situations in which decision makers confront compli-

cated models that require an explanation. For instance, policymakers often evaluate social

programs whose treatment effects (the outputs) depend on the demographic characteristics
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of the affected population (the inputs) through a complex relationship (the true model), and

the policymakers must choose which programs to implement (the action). Similarly, regu-

lators write rules on the deployment of complex AI models in society. Consider a state’s

transportation authority crafting safety standards for self-driving vehicles. Road, traffic, and

weather conditions (the inputs) enter a deep neural network (the true model) that directs

the car’s speed and navigation (the outputs). The regulator must decide the areas of the

community, if any, the autonomous vehicles are allowed to operate (the action).

We consider two ways that the DM might evaluate their payoff. In the first, the DM

maximizes the expectation of their payoff over the distribution of possible inputs. In the

context of the program evaluation example, a policymaker behaving this way would care

about the average treatment effect of a program. We call this the Utilitarian regime. In the

second, the DM puts weight only on the worst-case input. In the context of the self-driving

cars, a regulator behaving this way would care only about the self-driving car’s navigation

(and the possibility of an accident) under road conditions that would lead to the worst

possible consequences. We call this the Rawlsian regime.

The main results of the paper show that these two regimes have sharply contrasting

implications for the usefulness of model explanations as decision aids. If the DM is Utilitarian,

we show that, for any true model, as the set of intelligible models becomes richer (but

still finite-dimensional), it is possible to make the DM arbitrarily close to as well off as

understanding the true model itself, simply by explaining that model with the ordinary least

squares (OLS) method (Theorem 1).1 This result is not simply a consequence of the Stone-

Weierstrass theorem. Theorem 1 not only relies on the convergence of the OLS explanation

to a fixed true model, but also on the convergence of the set of true models consistent with

a fixed explanation.

Unlike the Utilitarian regime, we show that if the DM is Rawlsian, any explanation is

no better than having no explanation at all (Theorem 3). Intuitively, any explainer projects

the infinite-dimensional space of possible true models onto a finite-dimensional space of ex-

planations (i.e., the space of intelligible models). This limits the information that can be

recovered about the true model to a finite-dimensional sufficient statistic. Since there are

infinitely many inputs, this statistic is not useful to a DM who cares about the worst-case

input. In fact, this intuition for Theorem 3 extends to the intermediate case of an ambiguity-

averse DM in the sense of Gilboa and Schmeidler (1989): If the DM’s set of priors has

higher dimension than the set of intelligible models, Theorem 4 shows that any explainer is

unhelpful.

The paper’s two main results illustrate a fundamental dichotomy when it comes to model

1Here, an OLS-based explanation provides the coefficients from a linear regression of the outputs on the
inputs.
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explanations: an OLS-based explanation is nearly as good as knowing the true model if the

DM cares about the average outcome, but no explanation is useful if the DM cares about the

worst-case outcome.

Related Literature Several papers study models as devices that rationalize observed data.

Montiel Olea, Ortoleva, Pai and Prat (2022) show theoretically that low-dimensional models

can be believed to have superior predictive power when sample sizes are low, but high-

dimensional models become accepted when sample sizes get large. Spiegler (2016) examines

the implications of people having subjective causal models of long-run data distributions.

Schwartzstein and Sunderam (2021) study situations where people use models to persuade

others how to interpret data. In a series of papers, Fudenberg and Liang (2020); Fudenberg,

Kleinberg, Liang and Mullainathan (2022); Andrews, Fudenberg, Liang and Wu (2023);

Fudenberg, Gao and Liang (2024) evaluate how machine learning can enhance models of

human behavior and improve economic theories. By contrast, this paper focuses on explaining

unintelligible true models with intelligible models to facilitate decision-making.2

The paper’s application to evaluating social policies ties the work to the branch of microe-

conomic theory that integrates aspects of decision theory with policy choices, particularly

ones that rely on randomized controlled trials (RCTs) (Banerjee, Chassang and Snowberg

2017). See also Chassang, Padró i Miquel and Snowberg (2012), Kasy et al. (2013), Banerjee,

Chassang, Montero and Snowberg (2020), and Chassang and Kapon (2022). Unlike Banerjee

et al. (2020), this paper abstracts from the important issue of sampling error when estimating

policy effects. The friction that we study is not the finite nature of the sample generated

by the true model (the DGP), but the inability of a decision maker to fully understand the

true model even with infinite data. The paper’s setting captures situations in which social

program evaluators can run RCTs, but also cases where they only have observational data at

their disposal and instead use OLS-based methods to identify treatment effects. The paper’s

results illuminate the theoretical boundaries of these methods at explaining true underlying

models.

The paper’s application to the use of black-box AI models as decision aids connects it to

the growing economics literature studying human reliance on AI models in decision-making

(Kleinberg, Lakkaraju, Leskovec, Ludwig and Mullainathan 2018; Athey, Bryan and Gans

2020; Agrawal, Gans and Goldfarb 2022). Researchers have documented that people are

reluctant to rely on models that they do not understand, even if those models prove highly

accurate (Yeomans, Shah, Mullainathan and Kleinberg 2019; Chen, Feng, Sharma and Tan

2023). The paper’s results reveal key differences between settings in which explanations of

these models’ predictions are useful, and settings in which they are not.

2Blattner, Nelson and Spiess (2021) study the trade-offs between complex models and explanations for
them, though in a principal-agent setting where they analyze the optimal regulation of algorithms.
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Indeed, a large literature in computer science has developed methods to explain the

predictions of deep neural networks to make them more transparent to users, a field of

research called explainable AI (Došilović, Brčić and Hlupić 2018; Lipton 2018; Molnar 2020).

A very popular explanation method known as LIME (Local Interpretable Model-agnostic

Explanations) approximates models with a linear regression around a data point to reveal

features of the data having the largest impact on the model’s prediction at that point (Ribeiro,

Singh and Guestrin 2016). The paper’s results suggest that if the AI model user is Utilitarian,

then there exists an intelligible approximation of the model that is nearly as good as having

a complete understanding of why the neural network makes the predictions it does. On

the other hand, these sorts of explanations are unhelpful to a Rawlsian user of the model.

This latter result mirrors findings in computer science that warn of the unreliability of AI

model explanations (Rudin 2019; Lakkaraju and Bastani 2020; Slack, Hilgard, Jia, Singh and

Lakkaraju 2020).

Outline The remainder of the paper proceeds as follows. Section 2 describes the paper’s

setting. Section 3 and Section 4 provide the main results, the former when the DM is

Utilitarian and the latter when the DM is Rawlsian. Section 5 provides a discussion of the

paper’s findings. Section 6 concludes.

2 Setting

Inputs and Outputs A state of the world is (x, y) ∈ X × Y , where X ⊆ RK is a convex

set with dim(X) = K, and Y is RM . For any state of the world (x, y) ∈ X × Y , component

x ∈ X is interpreted as an input and component y ∈ Y is interpreted as an output. Inputs

x ∈ X follow a distribution µ0.

True Models A true model is a function f : X → Y . Given an input value x ∈ X, a true

model f specifies the relation between inputs and outputs via y = f(x).3 Let F ⊆ XY be a

linear subspace that describes the set of possible true models. Note that a true model could

be highly complex: f could be nonlinear, discontinuous, non-differentiable, non-measurable,

a realization of a multi-dimensional Brownian path, or defined by a deep neural network.

Actions and Payoffs A decision maker (henceforth DM) chooses an action a from a finite

set A = {a1, . . . , a|A|}. The DM’s payoff depends on the state of the world and the action

3While we assume the true model f is a deterministic function from inputs to outputs, extra randomness
can readily be incorporated into our framework by letting f be a function of both the inputs x and an
independent randomization device ε ∈ [0, 1].
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chosen. Let u : X × Y ×A :→ R denote the DM’s payoff function, and assume that u(·, ·, a)
is continuous on X × Y for all a ∈ A.

Example 1 (Treatment Effects: Banerjee et al. 2020). Consider a policymaker who chooses

whether to implement a treatment a ∈ {0, 1} in a population described by covariate vectors

x ∈ X. Each output y ∈ Y = RM = R2 describes the log likelihood ratios of the treatment

effects, i.e., the success rates of each treatment, so that

ya = log

(
P[success | a]

1− P[success | a]

)
when the treatment is a. The policymaker’s payoff is

u(x, y, a) = P[success | a] = logistic(ya) :=
1

1 + e−ya
.

The log-likelihood ratio of success rate ya under treatment a depends on the covariates x

through a true model f = (fa)a∈A, so that fa(x) ∈ R describes the log-likelihood ratio of the

success rate of treatment a when the covariate is x.

Example 2 (Self-Driving Car Regulation). A regulator needs to set policies for self-driving

cars by choosing among finitely many rules a ∈ A (e.g., speed limits, number of approved

licenses, areas to allow for self-driving). Inputs X ⊆ RK denote all possible conditions

surrounding a vehicle (e.g., lane markings, weather, infrastructure, traffic, visibility). An

output is denoted by y ∈ Y ⊆ RM = R|A|, so that ya is the expected net benefit of self-driving

under rule a (taking into account potential improved traffic efficiency and the possibility of

accidents). The regulator’s payoff is

u(x, y, a) = û(x, a)ya − c(a) ,

where û(x, a) is a cost-benefit multiplier that depends on condition x and rule a and c(a)

is the fixed cost of implementing rule a. The expected net benefit given rule a depends on

condition x through a true model y = f(x), which is determined by the autonomous vehicle’s

algorithms, so that fa(x) is the expected net benefit when the condition is x and the rule is

a.

Intelligible Models To capture the idea that the true model might be highly complicated

and thus unintelligible to the DM, we consider a set Φ of intelligible models, where Φ ⊆ F

is a finite-dimensional linear subspace. Only models in Φ are intelligible to the DM, in the

sense that the DM can only distinguish two different models, ϕ1 and ϕ2, if these models both

belong to Φ. For instance, Φ could be the set of nth degree polynomials of x, which can be
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described by finitely many coefficients.

Decision Problem Henceforth, we refer to a decision problem by a tuple (A, u,Φ), where

A is the (finite) set of available actions for the DM, u : X × Y × A → R is the DM’s payoff,

and Φ is the set of intelligible models for the DM.

Explainers and Explanations For any decision problem (A, u,Φ), the true model f may

not be intelligible to the DM. However, it can be explained to the DM through an explainer,

which is defined below:

Definition 1. An explainer for the decision problem (A, u,Φ) is a linear idempotent operator

Γ : F → F such that Γ(F ) = Φ.

An explainer Γ maps the true model f to an intelligible model Γ(f) ∈ Φ, so that the DM is

able to understand the true model through this explanation Γ(f). Linearity and idempotency

are equivalent to requiring explainers to satisfy the following desirable properties:

1. (Consistency): Γ(ϕ) = ϕ for all ϕ ∈ Φ. That is, if the true model f is intelligible, then

the explainer should explain it by the true model itself.

2. (Mixture Invariance): Γ(λ · g + (1− λ) · h) = λ · Γ(g) + (1− λ) · Γ(h) for all λ ∈ [0, 1]

and for all g, h ∈ F . That is, if model f ∈ F is generated by mixing two models

g, h ∈ F using a randomization device that is independent of the state (x, y), then the

explanation of f should not be affected by the randomization device and must also be

the mixture of the explanations of g and h via the same randomization device.4

For any explanation ϕ ∈ Φ of a true model given by an explainer Γ, the DM is aware that

the true model may not be precisely the intelligible explanation ϕ. The set of possible true

models consistent with the explanation ϕ is given by

Γ−1(ϕ) := {f ∈ F : Γ(f) = ϕ} .

A class of explainers that will be of particular interest is the ordinary least squares ex-

plainers. We define these explainers in the context where F is a linear subspace of L2(µ0)
M :

the set of all measurable functions f : X → Y such that E[fj(x)2] < ∞ for all j ∈ {1, . . . ,M}.
For any f, g ∈ F , define the inner product ⟨f, g⟩ := E[

∑M
j=1 fj(x)gj(x)].

Definition 2. Suppose that F is a linear subspace of L2(µ0)
M . An explainer Γ for a decision

problem (A, u,Φ) is the ordinary least squares explainer if Γ is orthogonal. That is, for any

ϕ ∈ Φ, ⟨ϕ, f − Γ(f)⟩ = 0.

4In other words, the explainer Γ is not affected by extra randomization devices that are not part of the
state space X × Y .
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Note that there is a unique ordinary least squares explainer of a decision problem (A, u,Φ),

as orthogonal projection onto Φ is unique. The ordinary least square explainer Γ maps any

true model f to the explanation Γ(f) that has the smallest distance to f (under the L2(µ0)

norm) among all intelligible models ϕ ∈ Φ.

X Y

F

Φ
φ

f

Γ

Figure 1: Illustration of the setting. Figure 1 depicts (1) the space F of possible true
models f , which are functions from the space X of inputs to the space Y of outputs; (2) the
subspace Φ ⊂ F of intelligible models ϕ; and (3) an explainer Γ that maps the space F of
possible true models to the subspace Φ of intelligible models.

Utilitarian and Rawlsian Regimes We assume the DM is aware that an explanation

ϕ may not be the same as the true model f , and thus evaluates their payoff based on the

worst-case model that is consistent with a given explanation. We consider two regimes for

how the DM uses the input distribution to evaluate their payoff: the Utilitarian regime and

the Rawlsian regime.

Under the Utilitarian regime, the DM evaluates their payoff using the distribution µ0 of

inputs x. For any decision problem (A, u,Φ) and for any explainer Γ, the DM’s payoff given

an explanation ϕ ∈ Φ is

U(ϕ|Γ) := max
a∈A

inf
f∈Γ−1(ϕ)

E[u(x, f(x), a)] .

In contrast, under the Rawlsian regime, the DM evaluates their payoff based on the worst-

case input. For any decision problem (A, u,Φ) and for any explainer Γ, the DM’s payoff given

an explanation ϕ ∈ Φ is

R(ϕ|Γ) := max
a∈A

inf
f∈Γ−1(ϕ)

inf
x∈X

u(x, f(x), a) .
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3 Utilitarian Regime

In many environments, decision makers care only about the average performance of their

actions. Policymakers may care only about the average treatment effect of an intervention;

regulators or businesses may only care about the average performance of AI models they

regulate or incorporate into their products. In this section, we explore how explaining mod-

els can help the DM make better decisions under this Utilitarian regime. As a technical

condition, we assume throughout this section that the set of all possible true models F is a

linear subspace of L2(µ0)
M .

For any true model f ∈ F , for any action set A and for any payoff u : X × Y × A → R,

let U(f) be the payoff achieved by a Utilitarian DM who understands the true model f :

U(f) := max
a∈A

E[u(x, f(x), a)] .

In the Utilitarian regime, U(f) is the highest payoff that the DM can achieve, given that

the true model is f . As a result, the performance of an explainer Γ for a given decision

problem (A, u,Φ) can be evaluated by how close the DM’s value U(Γ(f)|Γ) given the true

model f and the explainer Γ can be made to the benchmark U(f). Our next result suggests

that, as long as the space of intelligible models Φ is large enough (but still finite-dimensional),

the DM’s value can be made arbitrarily close to U(f) by the ordinary least squares explainer.

Theorem 1 (Almost-Perfect Explanations). Consider any action set A, any u : X×Y ×A →
R that is Lipschitz in y for all x ∈ X and a ∈ A, and any nested sequence {Φn} of intelligible

models such that dim(Φn) = n for all n ∈ N. For each n ∈ N, let Γn be the ordinary least

squares explainer for the decision problem (A, u,Φn). Then, for any true model f ∈ F and

for any ε > 0, there exists N ∈ N such that

U(Γn(f)|Γn) > U(f)− ε .

for all n > N .

To prove Theorem 1, it is necessary to show that as the dimensionality of intelligible mod-

els increases, there exists some intelligible model that approximates the true model. Having

some finite-dimensional intelligible model that approximates the true model, however, is not

enough to prove Theorem 1. For the DM’s value to be arbitrarily close to the benchmark

U(f), the set of all possible models that are consistent with the explaining model has to be

small enough as well, so that the worst-case payoff would not be far from the benchmark

payoff. While standard approximation methods (e.g., the Stone-Weierestrass theorem) could

be used to show that certain true models (e.g., continuous functions f on X) can be approxi-

mated by some finite-dimensional intelligible models (e.g., polynomials), these approaches do
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not guarantee that all models consistent with the approximating intelligible models are close

to the true model. Nonetheless, as we show in the proof, the orthogonality of the ordinary

least squares explainer Γ, together with the fact that F is a separable Hilbert space, allows

us to find a sequence of intelligible models that approximates the true model and ensures

that the sets of consistent models along the sequence eventually collapse to the true model.

In essence, Theorem 1 suggests that under the Utilitarian regime, regardless of the DM’s

payoff structure, the fact that some models are too complicated to be intelligible does not

impose an intrinsic limitation on the DM’s ability to make decisions. Rather, explaining

a complex and unintelligible model to a Utilitarian DM could be very beneficial, and the

benefit increases as the set of intelligible models widens. In the limit, by selecting a proper

explainer—which, according to Theorem 1, can always be obtained via the standard OLS

procedure—the DM can perform almost as well as if the true model were intelligible, however

complicated it might be.

To illustrate the implications of Theorem 1, we may consider the treatment effect setting

given by Example 1. Suppose that only polynomials are intelligible to the policymaker, and

that the true model f—the underlying DGP that determines the log-likelihood ratio of a

successful treatment—is highly complex and thus unintelligible. In this case, Φn is the set of

n-degree polynomials, and Γn is the ordinary least squares regression of outputs onto n-degree

polynomials. According to Theorem 1, as long as the degree n of intelligible polynomials is

high enough, the ordinary least squares regression allows the policymaker to make treatment

decisions arbitrarily well. In other words, running the OLS regression using high-enough

degree polynomials is approximately optimal.

In fact, for a certain class of decision problems, explaining models can help the DM

achieve exactly the first best payoff U(f). To see this, consider the class of decision problems

(u,A,Φ), where u is affine in y:

u(x, y, a) =
M∑
j=1

ûj(x, a)yj + û0(x, a) ,

for some {û(·, a)}a∈A ⊆ Φ ⊆ L2(µ0)
M . That is, the DM’s payoff is affine in outputs y, and the

weights {û(·, a)}a∈A, as functions in F , are intelligible. We refer to these decision problems

as payoff-intelligible affine decision problems.

Theorem 2 (Perfect Explanations). For any payoff-intelligible affine decision problem (A, u,Φ)

and for any true model f ∈ F , the DM’s first-best value can be achieved by the ordinary least

squares explainer Γ. That is,

U(Γ(f)|Γ) = U(f) .

Theorem 2 shows that, when the DM’s payoff is affine and when the weights {û(·, a)}a∈A
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are intelligible, the DM can do more than just perform approximately as well as knowing

the true model through the ordinary least squares explainer: they can achieve exactly their

first-best value U(f). In this case, the inability to understand complicated models does not

impose any limitations on the DM to make an optimal decision, as long as the payoff-relevant

weights {û(·, a)}a∈A are part of the set of intelligible models. The requirement that these

weights are intelligible is not unrealistic, as it is typically the case that a DM understands

their own ex-post payoffs. For instance, in the self-driving car example in Example 2, this

requirement means that the multiplier function û(·, a) is intelligible to the regulator for each

rule a.

A special case of payoff-intelligible affine decision problems is when the DM’s payoff is

affine in both the inputs and the outputs. Namely, the DM has separable preferences of the

form

u(x, y, a) = w0(a) + x⊺w1(a) + y⊺w2(a) , (1)

for some functions w0 : A → R, w1 : A → RK , w2 : A → RM . In this case, as long as the

set of intelligible models Φ contains a constant function, the decision problem (A, u,Φ) is

payoff-intelligible and affine.

Corollary 1. For any decision problem (A, u,Φ) where u is separable and Φ contains a

constant function, the DM’s first-best value can be achieved by the ordinary least squares

explainer Γ. That is,

U(Γ(f)|Γ) = U(f) .

4 Rawlsian Regime

When the space of intelligible models is rich enough (but still finite dimensional), Theorem 1

shows that it is possible to explain the model to a Utilitarian DM almost perfectly using or-

dinary least squares. In particular, the DM’s expected payoff after observing the explanation

produced by OLS is arbitrarily close to the expected payoff U(f) the DM would have if they

knew and understood the true model itself. Moreover, when the decision problem is affine

and payoff-intelligible, the OLS explainer allows a Utilitarian DM to make a choice perfectly.

But models must often be explained to decision makers who care about the models’worst-

case, rather than expected, performance. Policymakers may focus on those who could be

disproportionately harmed by an intervention (i.e., if the policymakers have a Rawlsian social

welfare function). Likewise, regulators or firms may be most concerned about the most

catastrophic effects that could result from adopting an AI model. Unfortunately, Theorem 3

below, in stark contrast to Theorem 1 and Theorem 2, reveals that explaining the true model
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to such a decision maker is futile. In particular, when the space of possible true models is

rich enough, no explainer can do better than no explanation at all.

Theorem 3 (Futility of Explanations in the Rawlsian Regime). Suppose that F contains all

bounded Borel measurable functions f : X → Y . No explainer can provide useful information

to a Rawlsian decision-maker: For any decision problem (A, u,Φ), any explainer Γ, and any

ϕ ∈ Φ,

R(ϕ|Γ) = R := max
a∈A

inf
f∈F
x∈X

u(x, f(x), a) = max
a∈A

inf
y∈Y
x∈X

u(x, y, a). (2)

Intuitively, the space of possible explanations is finite-dimensional, but the space of pos-

sible models is infinite-dimensional. The only way that a linear explainer can map from the

latter to the former is by discarding information about all but finitely many of those dimen-

sions (i.e., about the output that the true model produces for all but finitely many input

values).

In particular, suppose the DM observes an explanation ϕ∗. Proposition 1 below shows

that for every possible output y, and almost every possible input x, there is some model f

with f(x) = y that is consistent with that explanation. Since the DM’s payoff is continuous

and the space of inputs is convex, this is enough to ensure that the explanation does not

change the infimum in (2).

Proposition 1. Suppose that F contains all bounded Borel measurable functions f : X → Y .

Let Γ be an explainer; let ϕ∗ ∈ Φ be a explanation; let y ∈ Y be an output. For all but finitely

many x ∈ X, there exists f ∈ Γ−1(ϕ∗) such that f(x) = y.

Together, Theorem 3 and Proposition 1 reveal that explanations of complicated models

offer no assistance to a Rawlsian DM at all, no matter how rich the set of (finite-dimensional)

intelligible models is, and no matter how the DM’s payoff is structured. The stark contrast

between Theorem 1 and Theorem 3 stems from how the potential errors between the true

model and an intelligible model are evaluated. When the DM is Utilitarian, even if the

set of possible true models that is consistent with an explanation is infinite-dimensional,

the average difference between any of the models in this set and the true model becomes

arbitrarily small as the dimensionality of intelligible models increases. On the contrary,

when the DM is Rawlsian, the average difference is irrelevant. Rather, the difference in the

worst case scenario determines the performance of an explainer, which as Theorem 3 shows,

is inherently limited by the finite-dimensionality of the set of intelligible models.

To illustrate the implications of Theorem 3 and Proposition 1, we can revisit the treatment

effect example of Example 1, but now with a Rawlsian DM concerned with the worst-possible

treatment effects. Suppose once more that the DM can understand explanations of the data
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generating process as an nth degree polynomial, but that any true model outside that class is

unintelligible. Reporting the coefficients from a linear regression—which is standard practice

in the treatment effects literature—is then intelligible to the DM, but will never alter their

decisions. In fact, there is no explainer that can help the DM make a program evaluation

when they care about those in the population who would be most disadvantaged by the

policy.

So far, we have assumed that the DM knows the distribution of inputs µ0. What if the

DM was instead ambiguity-averse in the sense of Gilboa and Schmeidler (1989), had a set

of priors over inputs, and maximized the worst expected payoff over that set? Or, if µ0

represents the distribution of characteristics in a population, what if the DM does not know

that distribution exactly? Theorem 4 shows that when the set of possible distributions is

higher-dimensional than the space Φ of intelligible models, explanation is futile. This is true

even when the DM has separable payoffs, and thus cares only about the model’s expected

inputs and outputs.

Theorem 4 (Futility of Explanations with Ambiguity Aversion). Suppose that F contains all

bounded Borel measurable functions f : X → Y . If an ambiguity averse DM has a sufficiently

rich set of priors, useful explanation is impossible, even with separable payoffs (1): For any

decision problem (A, u,Φ), any explainer Γ, any convex M ⊆ ∆(X) with dim(M) > dim(Φ)

and any ϕ ∈ Φ,

RM(ϕ|Γ) := max
a∈A

inf
µ∈M

f∈Γ−1(ϕ)

Ex∼µ [u(x, f(x), a)] = RM := max
a∈A

inf
µ∈M
f∈F

Ex∼µ [u(x, f(x), a)]

= max
a∈A

inf
µ∈M
y∈Y

Ex∼µ [u(x, y, a)] .

Theorem 4 shows that explanations of the true model are not helpful to an ambiguity

averse DM. But it also provides a pessimistic perspective on Theorem 1. Even though expla-

nation can work arbitrarily well in the Utilitarian regime, Theorem 4 shows that Theorem 1

relies on the DM’s prior exactly matching the distribution of inputs µ0 used to compute the

model’s OLS explanation. In particular, there are priors that are arbitrarily close to µ0 for

which the explanation is not almost perfect (as in Theorem 1), but instead useless.

5 Discussion

5.1 The Effectiveness of Explanations

Theorem 1 and Theorem 3 present a fundamental dichotomy over the effectiveness of ex-

plaining complicated models. Explaining models using the canonical OLS approach is ap-

12



proximately optimal when a decision maker is Utilitarian; whereas no explainer can improve

a decision maker’s choice if they are Rawlsian.

In the context of policymaking, Theorem 1 suggests that standard regression analyses are

useful and powerful tools for summarizing and approximating the relationship between inputs

and outputs for a Utilitarian policymaker who cares about the average outcome. However,

Theorem 3 suggests that, when the policymaker is Rawlsian and cares about the worst out-

come, it is impossible for any regression analyses to provide useful guidance for policymaking.

As a result, any attempt at explaining the complicated data generating processes that oc-

cur in nature is then futile, as there are no explainers that can improve—even slightly—the

policymaker’s decisions.

Likewise, in the context of AI regulation, explaining a black-box AI model to a regu-

lator could be extremely helpful to a regulator who wishes to improve average outcomes.

Nonetheless, it is impossible to enable better decisions about worst-case scenarios by ex-

plaining black-box AI models.

Together, our results suggest that the effectiveness of model explanations depends cru-

cially on how the decision maker to whom the model is explained evaluates their payoff.

In particular, in environments where the decision maker is concerned about the worst-case

scenario, the availability of explanations of the true model—however sophisticated they are—

does not alleviate those concerns.

5.2 Recommendations vs. Explanations

Useful explanations fail in Theorem 3 because the space of intelligible models is finite-

dimensional, but the space of true models is infinite-dimensional. However, the DM only

cares about the model insofar as it helps them choose an action, and the set of actions is

finite. This suggests a remedy to the negative results under the Rawlsian regime: Instead of

offering explanations (i.e., intelligible models that represent the true model), offer recommen-

dations (i.e., inform the DM of the optimal action under the true model). That is, instead

of using an explainer Γ : F → Φ, one should use a recommender defined by5

G : F → A

f 7→ argmax
a∈A

inf
x∈X

u(x, f(x), a)

5Or in the ambiguity-averse case,

GM : F → A

f 7→ argmax
a∈A

inf
µ∈M

Ex∼µ[u(x, f(x), a)].
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Clearly, a recommender always gives the DM the full-information payoff R(f). Moreover,

unlike an explainer, a recommender places no cognitive demands on the DM. Instead of

considering all possible true models that could produce an explanation, and evaluating the

worst-case payoff for each action, the DM simply would follow the recommended action.

However, a recommendation only is successful if the decision maker’s payoff can be in-

corporated into the recommender’s design. If the same information about the true model

must be used by many decision makers with heterogeneous preferences or even one decision

maker with private information, a recommender may not deliver the full-information payoff,

because it may not always be optimal for the decision maker(s) to follow the recommenda-

tion. Indeed, there is ample empirical evidence of people overriding model recommendations

to make high-stakes decisions in several sectors of society like criminal justice, medicine, and

finance (De-Arteaga, Fogliato and Chouldechova 2020; Jussupow, Benbasat and Heinzl 2020;

Ludwig and Mullainathan 2021; Angelova, Dobbie and Yang 2023).6

6 Conclusion

We consider the problem of explaining models to a decision maker (DM). The DM has a

payoff that depends on their actions and the state of the world, where the latter is described

by inputs and outputs. A true model specifies the relation between these inputs and outputs,

but is not intelligible to the DM. For the DM to make a choice, the true model instead has

to be explained using an intelligible model that belongs to a finite dimensional space. We

show that if the DM maximizes their average payoff across inputs, then an explanation using

ordinary least squares is arbitrarily close to as good as understanding the true model itself.

However, if the DM maximizes their worst-case payoff across inputs, then any explanation

offers no advantage over no explanation at all.

The paper’s environment leaves room for continuing work. We abstract from sampling

error, but new insights might be gained by considering model explanation alongside model

estimation. We focus on a single decision maker, but a second agent could be introduced,

one who provides explanations of models that may misalign with the interests of the decision

maker.7
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{Φn} of linear subspaces with dim(Φn) = n for all n ∈ N. We claim that there exists

an orthonormal basis {ϕn} of F such that {ϕi}ni=1 is an orthonormal basis of Φn. Since

dim(Φ1) = 1, Φ1 = span{ϕ1} for some ϕ1 ∈ F with ∥ϕ1∥ = 1. For each n ∈ N, given an

orthonormal basis {ϕi}ni=1 of Φn, since Φn is a linear subspace of Φn+1 and dim(Φn) = n,

dim(Φn+1) = n+ 1, Φn+1 = Φn ⊕ span{ϕn+1} for some ϕn+1 ∈ Φn+1 such that ⟨ϕi, ϕn+1⟩ = 0

for all i ∈ {1, . . . , n} and ∥ϕn+1∥ = 1. Thus, {ϕi}n+1
i=1 is an orthnormal basis of Φn+1. By

induction, there exists an orthonormal sequence {ϕn} such that Φn = span{ϕi}ni=1 for all

n ∈ N. Moreover, since dim(∪∞
n=1Φn) = ∞ and since F is a separable Hilbert space, F is

isomorphic to ∪∞
n=1Φn and hence span{ϕn} = F . Therefore, {ϕn} is an orthonormal basis of

F .

Since u(x, y, a) is Lipschitz, for any x ∈ X, y, y′ ∈ Y , and a ∈ A, there exists K(x, a)

such that |u(x, y, a)− u(x, y′, a)| ≤ K(x, a)∥y − y′∥, and hence,

|max
a∈A

u(x, y, a)−max
a∈A

u(x, y′, a)| ≤ max
a∈A

|u(x, y, a)− u(x, y′, a)| ≤ max
a∈A

K(x, a)∥y − y′∥.

Meanwhile, note that for any finite dimensional subspace Φ, for any explainer Γ with

Im(Γ) = Φ, and for any ϕ ∈ Φ, we have

max
a∈A

inf
f̂∈Γ−1(ϕ)

E[u(x, f̂(x), a)] ≤ max
a∈A

E[u(x, ϕ(x), a)] = E[u(x, ϕ(x), a∗(ϕ))] ,

for any a∗(ϕ) that maximizes E[u(x, ϕ(x), a)], Therefore,

inf
f̂∈Γ−1(ϕ)

E[u(x, f̂(x), a∗(ϕ))] ≤ max
a∈A

inf
f̂∈Γ−1(ϕ)

E[u(x, f̂(x), a)] ≤ E[u(x, ϕ(x), a∗(ϕ))] .

Moreover, for any f̂ ∈ Γ−1(ϕ) and for any a ∈ A,

|E[u(x, ϕ(x), a)]− inf
f̂∈Γ−1(ϕ)

E[u(x, f̂(x), a)]| = sup
f̂∈Γ−1(ϕ)

|E[u(x, ϕ(x), a)− u(x, f̂(x), a)]|

≤ sup
f̂∈Γ−1(ϕ)

E[|u(x, ϕ(x), a)− u(x, f̂(x), a)|]

≤ sup
f̂∈Γ−1(ϕ)

E[K(x, a)∥f̂(x)− ϕ(x)∥].
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Together, for any ϕ ∈ Φ and for any explainer Γ,

(max
a∈A

E[u(x, f(x), a)]−max
a∈A

inf
f̂∈Γ−1(ϕ)

E[u(x, f̂(x), a)])2

=(max
a∈A

E[u(x, f(x), a)]−max
a∈A

E[u(x, ϕ(x), a)] + E[u(x, ϕ(x), a)]−max
a∈A

inf
f̂∈Γ−1(ϕ)

E[u(x, f̂(x), a)])2

≤(max
a∈A

E[K(x, a)∥f(x)− ϕ(x)∥] + E[u(x, ϕ(x), a)]− inf
f̂∈Γ−1(ϕ)

E[u, f̂ , a∗(ϕ)])2

≤(max
a∈A

E[K(x, a)∥f(x)− ϕ(x)∥]− sup
f̂∈Γ−1(ϕ)

E[K(x, a)∥f̂(x)− ϕ(x)∥])2

≤(max
a∈A

E[K(x, a)∥f(x)− ϕ(x)∥])2 + ( sup
f̂∈Γ−1(ϕ)

E[K(x, a)∥f̂(x)− ϕ(x)∥])2

≤max
a∈A

E[K(x, a)2] · ∥f − ϕ∥2 +max
a∈A

E[K(x, a)2] · sup
f̂∈Γ−1(ϕ)

∥f̂ − ϕ∥2 ,

where the last inequality follows from the Cauchy-Schwartz inequality.

For any n ∈ N, since Γn is the orthogonal projection onto Φn = span{ϕi}ni=1, and since

{ϕn}∞n=1 is an orthonormal basis of F , for any true model f , Γn(f) =
∑n

i=1⟨ϕi, f⟩ϕi, and

therefore f̂ ∈ Γ
−1

n (Γn(f)) if and only if ⟨ϕi, f⟩ = ⟨f̂ , ϕi⟩ for all i ∈ {1, . . . , n}. It then follows

that

Γ
−1

n+1(Γn+1(f)) ⊆ Γ
−1

n (Γn(f)) ,

for all n ∈ N. Therefore,

sup
f̂∈Γ−1

n+1(Γn+1(f))

∞∑
i=n+2

⟨ϕi, f̂⟩2 ≤ sup
f̂∈Γ−1

n (Γn(f))

∞∑
i=n+1

⟨ϕi, f̂⟩2

and hence limn→∞ sup
f̂∈Γ∗−1

n (Γn(f))

∑∞
i=n+1⟨ϕi, f̂⟩2 = κ ≥ 0 exists. We now claim that κ = 0.

Suppose the contrary, that κ > 0. Then for any n ∈ N, there exists fn ∈ Γ
−1

n (f) such that∑∞
i=n+1⟨ϕi, fn⟩2 > κ/2 > 0. Moreover, since {ϕn}∞n=1 is an orthonormal basis of F ,

∞⋂
n=1

Γ
−1

n (Γn(f)) = {f} ,

together with the fact that F is a complete metric space, limn→∞ ∥fn − f∥ = 0. Since∑∞
i=1⟨ϕi, f⟩2 converges, there exists N ∈ N such that

∑∞
i=n+1⟨ϕi, f⟩2 < κ/4 for all n > N ,
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Therefore, for any < N < m < n

∞∑
i=m+1

|⟨ϕi, fn − f⟩|∥fn + f∥ ≥
∞∑

i=n+1

⟨|ϕi, fn − f⟩| · |⟨ϕi, fn + f⟩|

≥
∞∑

i=n+1

⟨ϕi, fn⟩2 −
∞∑

i=n+1

⟨ϕi, f⟩2

>
κ

2
−

∞∑
i=n+1

⟨ϕi, f⟩2

>
κ

4

>0 ,

where the first inequality follows from Bessel’s inequality. This leads to a contradiction, as

limn→∞ ∥fn − f∥ = 0 implies that

lim sup
n→∞

∞∑
i=m+1

|⟨ϕi, f − fn⟩|∥fn + f∥ = 0 .

Together, we have

lim
n→∞

sup
f̂∈Γ−1

n (Γn(f))

∞∑
i=n+1

⟨ϕi, f̂⟩2 = κ = 0 .

Now consider any f ∈ F and any ε > 0. Since
∑∞

i=1⟨ϕi, f⟩ϕi = f , there exists N1 ∈ N

such that

∥Γn(f)− f∥2 =

∥∥∥∥∥
n∑

i=1

⟨ϕi, f⟩ϕi − f

∥∥∥∥∥
2

=<
ε2

2maxa∈A E[K(x, a)2]
.

Also, since limn→∞ sup
f̂∈Γ−1

n (Γn(f))

∑∞
i=n+1⟨ϕi, f̂⟩2 = 0, there exists N2 ∈ N such that

sup
f̂∈Γ−1

n (Γn(f))

∞∑
i=n+1

⟨ϕi, f̂⟩2 <
ε2

2maxa∈A E[K(x, a)2]
,
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for all n > N2. Let N := max{N1, N2}, then for any n > N ,

(U(f)− U(Γn(f)|Γn))
2

=(max
a∈A

E[u(x, f(x), a)]−max
a∈A

inf
f̂∈Γ−1

n (Γn(f))

E[u(x, f̂(x), a)])2

≤max
a∈A

E[K(x, a)2] · ∥f − Γn(f)∥2 +max
a∈A

E[K2(x, a)] · sup
f̂∈Γ−1

n (Γn(f))

∥f̂ − Γn(f)∥2

=max
a∈A

E[K(x, a)2] · ∥f − Γn(f)∥2 +max
a∈A

E[K(x, a)2] · sup
f̂∈Γ−1

n (Γn(f))

∞∑
i=n+1

⟨ϕ, f̂⟩2

<
ε2

2
+

ε2

2

<ε2 ,

and thus |U(f)− U(Γn(f)|Γn)| < ε, as desired. ■

Proof of Theorem 2 (Perfect Explanations) Consider any true model f and let ϕ :=

Γ(f). Since Γ is the orthogonal projection onto Φ ⊇ span{û(·, a)}a∈A, for any a ∈ A,

⟨û(·, a), f̂ − ϕ⟩ = 0 .

,for any f̂ ∈ Γ∗−1(ϕ), and hence,

E

[
M∑
j=1

ûj(x, a)f̂j(x)

]
= ⟨û(·, a), f̂⟩ = ⟨û(·, a), ϕ⟩ = E

[
M∑
j=1

ûj(x, a)ϕj(x)

]
,

for all a ∈ A. Therefore,

inf
f̂∈Γ∗−1(ϕ)

E[u(x, f̂(x), a)] =E

[
M∑
j=1

ûj(x, a)ϕj(x)

]
+ E[u0(x, a)]

=E

[
M∑
j=1

ûj(x, a)fj(x)

]
+ E[u0(x, a)]

=E[u(x, f(x), a)] ,

for all a ∈ A, which implies

U(Γ(f)|Γ) = U(f) ,

as desired. ■

Lemma 1. Suppose that F is the set of bounded Borel measurable functions from X to Y :

F = Bb(X)M . Let Γ be an explainer; let ϕ∗ ∈ Φ be a explanation; let y ∈ Y be an output.
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The set of priors

My,ϕ∗ := {µ ∈ ∆(X) | Ex∼µ[f(x)] ̸= y∀f ∈ Γ−1(ϕ∗)} (3)

has finite dimension no greater than dim(Φ).

Proof. Since Bb(X) is complete in the sup-norm, so is Bb(X)M with the norm ||f || =

supx∈X,1≤i≤M |f(x)i|.8 For each µ ∈ ∆(X) and 1 ≤ i ≤ M , define the entrywise expectation

linear functional eµ,i by eµ,i(f) = Ex∼µ[f(x)]i; each eµ,i is continuous, since |Ex∼µ[f(x)]i| ≤
supx∈X |f(x)i| ≤ ||f ||. Choose a basis B of Γ(F ) = Φ, and for each ϕ ∈ B, choose fϕ ∈ Γ−1(ϕ).

Let F = {fϕ}ϕ∈B. Suppose toward a contradiction that there is a finite linearly independent

set M ⊆ My,ϕ∗ with |M| > dim(Φ).9 We first prove three claims.

Claim L1.1: spanF+ker(Γ) = F . By definition, spanF+ker(Γ) ⊆ F . Since B is a basis for

Γ(F ), for every f ∈ F , there exist {cϕ}ϕ∈B ⊂ R such that Γ(f) =
∑

ϕ∈B cϕϕ =
∑

ϕ∈B cϕΓ(fϕ).

Then Γ(
∑

ϕ∈B cϕfϕ) =
∑

ϕ∈B cϕΓ(fϕ) = Γ(f). Then f −
∑

ϕ∈B cϕfϕ ∈ ker(Γ), and hence

f ∈ spanF + ker(Γ).

Claim L1.2: For any µ ∈ My,ϕ∗, ker(Γ) ∩
⋂

j ̸=i ker(eµ,j) ⊆ ker(eµ,i) for some i: Suppose

not. Then for each i, there exists gi ∈ ker(Γ) such that Ex∼µ[g
i(x)]i ̸= 0 but Ex∼µ[g

i(x)]j = 0

for each j ̸= i. Then for any h ∈ Γ−1(ϕ∗), f = h +
∑M

i=1
(yi−h(x)i)
Ex∼µ[gi(x)]i

gi ∈ Γ−1(ϕ∗). Then

Ex∼µ[f(x)] = y, a contradiction.

Claim L1.3: For each 1 ≤ i ≤ M and each µ ∈ M, there exists giµ ∈ F such that

Ex∼µ[g
i
µ(x)]i = 1 but Ex∼µ′ [giµ(x)]i = 0 for each µ′ ∈ M\{µ}. Let e−µ,i =

⊕
µ′∈M\{µ} eµ′,i ∈

B(F,R|M|−1) be the direct sum of the ith-entry expectation functionals for the priors in

M other than µ. Let e∗−µ,i : R|M|−1 → F ∗ = B(F,R) be the adjoint of e−µ,i defined by

e∗−µ,i(z) = z·e−µ,i. SinceM is linearly independent, and Fi = Bb(X) contains the set of simple

functions, {eµ′,i}µ′∈M must be linearly independent as well; consequently, eµ,i /∈ e∗−µ,i(R
|M|−1).

Since it is a subspace of the finite-dimensional space R|M|−1, e−µ,i(F ) is closed. Then

by Kantorovich and Akilov (1964) Theorem 3∗ (2.XII), e∗−µ,i(R
|M|−1) = ⊥ ker(e−µ,i) = {A ∈

F ∗|A(f) = 0∀f ∈ ker(e−µ,i)}. It follows that there exists g ∈ ker(e−µ,i) =
⋂

µ′∈M\{µ} ker(eµ′,i)

such that eµ,i(g) ̸= 0; the claim follows by letting giµ = 1
Ex∼µ[g(x)]i

g.

We now construct a function for each z ∈ RM that is in the span of F , and which returns

the µth element of z when its expectation is taken under µ.

By Claim L1.2, there exist {iµ}µ∈M such that for each µ ∈ M, ker(Γ)∩
⋂

j ̸=iµ
ker(eµ,j) ⊆

8Note that since the Euclidean and taxicab metrics induce the same topology on RM , this norm induces
the same topology on Bb(X)M as ||f || = supx∈X ||f(x)||.

9Assuming that M is finite is without loss, since if |M| = ∞, we can always take a finite subset.
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ker(eµ,iµ). For any z ∈ RM, let

fz(x) =
∑
µ∈M

zµ([g
iµ
µ (x)]iµ ⊕ 0−iµ),

where giµ are as defined in Claim L1.3. For each µ ∈ M, since g
iµ
µ ∈ F = Bb(X)M , we

must have [g
iµ
µ (x)]iµ ∈ Bb(X), and hence fz ∈ F . Then for each µ ∈ M, Ex∼µ[fz(x)] =

zµ(1iµ ⊕ 0−iµ), and so fz ∈
⋂

j ̸=iµ
ker(eµ,j).

Claim L1.4: fz ∈ spanF . Suppose not. Then by Claim L1.1, fz ∈ ker(Γ). Then we have

fz ∈ ker(Γ) ∩
⋂

j ̸=iµ
ker(eµ,j), and hence fz ∈ ker(eµ,iµ), for each µ ∈ M. Then for each

µ ∈ M, Ex∼µ[fz(x)] = zµ(1iµ ⊕ 0−iµ) = 0, and hence z = 0. But then fz = 0 ∈ spanF , a

contradiction.

Now for each ϕ ∈ B, let yϕ ∈ RM be the vector whose µth entry is yϕµ = eµ,iµ(fϕ).

Claim L1.5: For each z ∈ RM, z ∈ span{yϕ}ϕ∈B. By Claim L1.4, given z ∈ RM, we can

write fz =
∑

ϕ∈B λ
z
ϕfϕ for some {λz

ϕ}ϕ∈Φ ⊆ R. Then for each µ ∈ M, Ex∼µ[fz(x)] = zµ(1iµ ⊕
0−iµ) =

∑
ϕ∈B λ

z
ϕEx∼µ[fϕ(x)], and hence zµ =

∑
ϕ∈B λ

z
ϕy

ϕ
µ. It follows that z =

∑
ϕ∈B λ

z
ϕy

ϕ,

and hence z ∈ span{yϕ}ϕ∈B.

We now complete the proof. Since B is a basis for Γ(F ), which is a subspace of Rdim(Φ),

it has no more than dim(Φ) elements; it follows from Claim L1.5 that dim(RM) = |B| ≤
dim(Φ) < |M|, a contradiction. ■

Corollary 2. Suppose that F contains all bounded Borel measurable functions from f : X →
Y . Let Γ be an explainer; let ϕ∗ ∈ Φ be a explanation; let y ∈ Y be an output. The set of

priors

My,ϕ∗ := {µ ∈ ∆(X) | Ex∼µ[f(x)] ̸= y∀f ∈ Γ−1(ϕ∗)}

has finite dimension no greater than dim(Φ).

Proof. Let F ′ = Bb(X)M ⊆ F and consider the restriction Γ|F ′ . Then we have Γ−1(ϕ∗) ⊇
Γ|−1

F ′ (ϕ∗). Hence

My,ϕ∗ ≡ {µ ∈ ∆(X) | Ex∼µ[f(x)] ̸= y∀f ∈ Γ−1(ϕ∗)} ⊆ {µ ∈ ∆(X) | Ex∼µ[f(x)] ̸= y∀f ∈ Γ|−1
F ′ (ϕ

∗)}.

The claim then follows immediately from Lemma 1. ■

Proof of Proposition 1 Follows immediately from Corollary 2 by identifying each x ∈ X

with the degenerate distribution δx with δx({x}) = 1. ■
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Proof of Theorem 3 (Futility of Explanations in the Rawlsian Regime) Fix ϕ ∈
Γ(F ), and for each y ∈ Y let Xϕ,y ≡ {x ∈ X | f(x) ̸= y∀f ∈ Γ−1(ϕ)}. By Proposition 1,

each Xϕ,y is finite. Since X is convex, it has no isolated points, so it follows that each y,

X \Xϕ,y is dense in X. Then since u is continuous, for each y ∈ Y and a ∈ A, u(X, y, a) ⊆
cl(u(X \Xϕ,y, y, a)). Hence infx∈X u(x, y, a) ≤ infx∈X\Xϕ,y

u(x, y, a), and since X \Xϕ,y ⊆ X,

we have

inf
x∈X

u(x, y, a) = inf
x∈X\Xϕ,y

u(x, y, a).

Now by definition of Xϕ,y, for each y ∈ Y and a ∈ A,

{u(x, y, a) | x ∈ X \Xϕ,y} = {u(x, f(x), a) | f ∈ Γ−1(ϕ), x ∈ X \Xϕ,y, f(x) = y}
⊆ {u(x, f(x), a) | f ∈ Γ−1(ϕ), x ∈ X}.

It follows that for each y ∈ Y and a ∈ A,

inf
x∈X

u(x, y, a) = inf
x∈X\Xϕ,y

u(x, y, a) ≥ inf
x∈X

f∈Γ−1(ϕ)

u(x, f(x), a).

Taking infima over y yields infx∈X,y∈Y u(x, y, a) ≥ infx∈X,f∈Γ−1(ϕ) u(x, f(x), a). Then we have

inf
x∈X

f∈Γ−1(ϕ)

u(x, f(x), a) ≥ inf
x∈X
f∈F

u(x, f(x), a) ≥ inf
x∈X
y∈Y

u(x, y, a) ≥ inf
x∈X

f∈Γ−1(ϕ)

u(x, f(x), a),

and so all the quantities must be equal. Then taking maxima over A yields R(ϕ|Γ) = R =

infx∈X,y∈Y u(x, y, a), as desired. ■

Proof of Theorem 4 (Futility of Explanation with Ambiguity Aversion) Fix ϕ ∈
Γ(F ), and for each y ∈ Y let My,ϕ be as in (3). By Corollary 2, for each y ∈ Y , dim(My,ϕ) ≤
dim(Φ) < dim(M).

Claim T4.1. M\My,ϕ is dense in M (in the weak∗-topology): Since dim(aff(My,ϕ)) =

dim(My,ϕ) < dim(M),M\aff(My,ϕ) is nonempty. Given µ ∈ My,ϕ, choose µ
′ ∈ M\aff(My,ϕ).

Then for each n, µn = 1
n
µ′ + (1− 1

n
)µ ∈ M (since M is convex) but µn /∈ aff(My,ϕ) (since if

it was, then because µ ∈ aff(My,ϕ), we would have to have µ′ = nµn− (n−1)µ ∈ aff(My,ϕ))).

Since µn →w∗ µ, µ is a limit point of M\My,ϕ; the claim follows.

Since u is continuous, for each y ∈ Y and a ∈ A, it follows from Claim T4.1 that

{Ex∼µ[u(x, y, a)] | µ ∈ M} ⊆ cl({Ex∼µ[u(x, y, a)] | µ ∈ M\Mϕ,y}). Hence infµ∈MEx∼µ[u(x, y, a)] ≤
infµ∈M\Mϕ,y

Ex∼µ[u(x, y, a)], and since µ ∈ M \Mϕ,y ⊆ M, we have

inf
µ∈M

Ex∼µ[u(x, y, a)] = inf
µ∈M\Mϕ,y

Ex∼µ[u(x, y, a)].
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Since u is quadratic, we have u(x, y, a) = w0(a) + w1(a)
⊺x+ w2(a)

⊺y. Then by definition

of Mϕ,y, for each y ∈ Y and a ∈ A,

{Ex∼µ[u(x, y, a)] | µ ∈ M \Mϕ,y} = {w0(a) + w1(a)
⊺Ex∼µ[x] + w2(a)

⊺y | f ∈ Γ−1(ϕ), µ ∈ M \Mϕ,y}

= {w0(a) + w1(a)
⊺Ex∼µ[x] + w2(a)

⊺Ex∼µ[f(x)] | f ∈ Γ−1(ϕ), µ ∈ M \Mϕ,y, Ex∼µ[f(x)] = y}

⊆ {Ex∼µ[u(x, f(x), a)] | f ∈ Γ−1(ϕ), µ ∈ M}.

It follows that for each y ∈ Y and a ∈ A,

inf
µ∈M

Ex∼µ[u(x, y, a)] = inf
µ∈M\Mϕ,y

Ex∼µ[u(x, y, a)] ≥ inf
µ∈M

f∈Γ−1(ϕ)

Ex∼µ[u(x, f(x), a)].

Taking infima over y yields infµ∈M,y∈Y Ex∼µ[u(x, y, a)] ≥ infµ∈M,f∈Γ−1(ϕ) Ex∼µ[u(x, f(x), a)].

Then we have

inf
µ∈M

f∈Γ−1(ϕ)

Ex∼µ[u(x, f(x), a)] ≥ inf
µ∈M
f∈F

Ex∼µ[u(x, f(x), a)] ≥ inf
µ∈M
y∈Y

Ex∼µ[u(x, y, a)] ≥ inf
µ∈M

f∈Γ−1(ϕ)

Ex∼µ[u(x, f(x), a)],

and so all the quantities must be equal. Then taking maxima over A yields RM(ϕ|Γ) =

RM = maxa∈A infµ∈M
y∈Y

Ex∼µ [u(x, y, a)] , as desired. ■
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